Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (34)
Collection
Year
  • 1
    Publication Date: 2015-03-20
    Description: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brienen, R J W -- Phillips, O L -- Feldpausch, T R -- Gloor, E -- Baker, T R -- Lloyd, J -- Lopez-Gonzalez, G -- Monteagudo-Mendoza, A -- Malhi, Y -- Lewis, S L -- Vasquez Martinez, R -- Alexiades, M -- Alvarez Davila, E -- Alvarez-Loayza, P -- Andrade, A -- Aragao, L E O C -- Araujo-Murakami, A -- Arets, E J M M -- Arroyo, L -- Aymard C, G A -- Banki, O S -- Baraloto, C -- Barroso, J -- Bonal, D -- Boot, R G A -- Camargo, J L C -- Castilho, C V -- Chama, V -- Chao, K J -- Chave, J -- Comiskey, J A -- Cornejo Valverde, F -- da Costa, L -- de Oliveira, E A -- Di Fiore, A -- Erwin, T L -- Fauset, S -- Forsthofer, M -- Galbraith, D R -- Grahame, E S -- Groot, N -- Herault, B -- Higuchi, N -- Honorio Coronado, E N -- Keeling, H -- Killeen, T J -- Laurance, W F -- Laurance, S -- Licona, J -- Magnussen, W E -- Marimon, B S -- Marimon-Junior, B H -- Mendoza, C -- Neill, D A -- Nogueira, E M -- Nunez, P -- Pallqui Camacho, N C -- Parada, A -- Pardo-Molina, G -- Peacock, J -- Pena-Claros, M -- Pickavance, G C -- Pitman, N C A -- Poorter, L -- Prieto, A -- Quesada, C A -- Ramirez, F -- Ramirez-Angulo, H -- Restrepo, Z -- Roopsind, A -- Rudas, A -- Salomao, R P -- Schwarz, M -- Silva, N -- Silva-Espejo, J E -- Silveira, M -- Stropp, J -- Talbot, J -- ter Steege, H -- Teran-Aguilar, J -- Terborgh, J -- Thomas-Caesar, R -- Toledo, M -- Torello-Raventos, M -- Umetsu, R K -- van der Heijden, G M F -- van der Hout, P -- Guimaraes Vieira, I C -- Vieira, S A -- Vilanova, E -- Vos, V A -- Zagt, R J -- England -- Nature. 2015 Mar 19;519(7543):344-8. doi: 10.1038/nature14283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Geography, University of Leeds, Leeds LS2 9JT, UK. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK. ; 1] Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK. [2] School of Marine and Tropical Biology, James Cook University, Cairns, 4870 Queenland, Australia. ; Jardin Botanico de Missouri, Prolongacion Bolognesi Mz.e, Lote 6, Oxapampa, Pasco, Peru. ; Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QK, UK. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] Department of Geography, University College London, Pearson Building, Gower Street, London WC1E 6BT, UK. ; School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury CT1 3EH, UK. ; Servicios Ecosistemicos y Cambio Climatico, Jardin Botanico de Medellin, Calle 73 no. 51 D-14, C.P. 050010, Medellin, Colombia. ; Center for Tropical Conservation, Duke University, Box 90381, Durham, North Carolina 27708, USA. ; Biological Dynamics of Forest Fragment Project (INPA &STRI), C.P. 478, Manaus AM 69011-970, Brazil. ; 1] Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK. [2] National Institute for Space Research (INPE), Av. Dos Astronautas, 1758, Sao Jose dos Campos, Sao Paulo 12227-010, Brazil. ; Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Casilla 2489, Av. Irala 565, Santa Cruz, Bolivia. ; Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands. ; UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, Estado Portuguesa, 3350 Venezuela. ; Biodiversiteit en Ecosysteem Dynamica, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands. ; 1] Institut National de la Recherche Agronomique, UMR EcoFoG, Campus Agronomique, 97310 Kourou, French Guiana. [2] International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA. ; Universidade Federal do Acre, Campus de Cruzeiro do Sul, Rio Branco, Brazil. ; INRA, UMR 1137 ''Ecologie et Ecophysiologie Forestiere'' 54280 Champenoux, France. ; Embrapa Roraima, Caixa Postal 133, Boa Vista, RR, CEP 69301-970, Brazil. ; Universidad Nacional San Antonio Abad del Cusco, Av. de la Cultura N degrees 733, Cusco, Peru. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] International Master Program of Agriculture, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan. ; Universite Paul Sabatier CNRS, UMR 5174 Evolution et Diversite Biologique, Batiment 4R1, 31062 Toulouse, France. ; Northeast Region Inventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, Virginia 22405, USA. ; Andes to Amazon Biodiversity Program, Puerto Maldonado, Madre de Dios, Peru. ; Universidade Federal do Para, Centro de Geociencias, Belem, CEP 66017-970 Para, Brazil. ; Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, Caixa Postal 08, CEP 78.690-000, Nova Xavantina MT, Brazil. ; Department of Anthropology, University of Texas at Austin, SAC Room 5.150, 2201 Speedway Stop C3200, Austin, Texas 78712, USA. ; Department of Entomology, Smithsonian Institution, PO Box 37012, MRC 187, Washington DC 20013-7012, USA. ; Cirad, UMR Ecologie des Forets de Guyane, Campus Agronomique, 97310 Kourou, French Guiana. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] Instituto de Investigaciones de la Amazonia Peruana, Av. A. Jose Quinones km 2.5, Iquitos, Peru. ; World Wildlife Fund, 1250 24th Street NW, Washington DC 20037, USA. ; Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Environmental Sciences, James Cook University, Cairns, Queensland 4878, Australia. ; Instituto Boliviano de Investigacion Forestal, C.P. 6201, Santa Cruz de la Sierra, Bolivia. ; National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, CEP 69011-970, Brazil. ; 1] FOMABO, Manejo Forestal en las Tierras Tropicales de Bolivia, Sacta, Bolivia. [2] Escuela de Ciencias Forestales (ESFOR), Universidad Mayor de San Simon (UMSS), Sacta, Bolivia. ; Universidad Estatal Amazonica, Facultad de Ingenieria Ambiental, Paso lateral km 2 1/2 via Napo, Puyo, Pastaza, Ecuador. ; National Institute for Research in Amazonia (INPA), C.P. 2223, 69080-971, Manaus, Amazonas, Brazil. ; Universidad Autonoma del Beni, Campus Universitario, Av. Ejercito Nacional, Riberalta, Beni, Bolivia. ; 1] Instituto Boliviano de Investigacion Forestal, C.P. 6201, Santa Cruz de la Sierra, Bolivia. [2] Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; 1] Center for Tropical Conservation, Duke University, Box 90381, Durham, North Carolina 27708, USA. [2] The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, USA. ; Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Universidad Nacional de la Amazonia Peruana, Iquitos, Loreto, Peru. ; Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, Conjunto Forestal, C.P. 5101, Merida, Venezuela. ; Iwokrama International Centre for Rainforest Conservation and Development, 77 High Street Kingston, Georgetown, Guyana. ; Museu Paraense Emilio Goeldi, Av. Magalhaes Barata, 376 - Sao Braz, CEP 66040-170, Belem PA, Brazil. ; UFRA, Av. Presidente Tancredo Neves 2501, CEP 66.077-901, Belem, Para, Brazil. ; Museu Universitario, Universidade Federal do Acre, Rio Branco AC 69910-900, Brazil. ; European Commission - DG Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi 274, 21010 Ispra, Italy. ; 1] Naturalis Biodiversity Center, PO Box, 2300 RA, Leiden, The Netherlands. [2] Ecology and Biodiversity Group, Utrecht University, PO Box 80084, 3508 TB Utrecht, The Netherlands. ; Museo de Historia Natural Alcide D'Orbigny, Av. Potosi no 1458, Cochabamba, Bolivia. ; 1] School of Earth and Environmental Science, James Cook University, Cairns, Queensland 4870, Australia. [2] Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Tropical Biology, James Cook University, Cairns, Queensland 4878, Australia. ; 1] Northumbria University, School of Geography, Ellison Place, Newcastle upon Tyne, Newcastle NE1 8ST, UK. [2] University of Wisconsin, Milwaukee, Wisconsin 53202, USA. [3] Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama. ; Van der Hout Forestry Consulting, Jan Trooststraat 6, 3078 HP Rotterdam, The Netherlands. ; Universidade Estadual de Campinas, NEPAM, Rua dos Flamboyants, 155- Cidade Universitaria Zeferino Vaz, Campinas, CEP 13083-867, Sao Paulo, Brazil. ; 1] Universidad Autonoma del Beni, Campus Universitario, Av. Ejercito Nacional, Riberalta, Beni, Bolivia. [2] Centro de Investigacion y Promocion del Campesinado, regional Norte Amazonico, C/ Nicanor Gonzalo Salvatierra N degrees 362, Casilla 16, Riberalta, Bolivia. ; Tropenbos International, PO Box 232, 6700 AE Wageningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25788097" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Brazil ; Carbon/analysis/metabolism ; Carbon Dioxide/*analysis/metabolism ; *Carbon Sequestration ; Plant Stems/metabolism ; *Rainforest ; Trees/growth & development/metabolism ; Tropical Climate ; Wood/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hommelhoff, Peter -- Higuchi, Takuya -- England -- Nature. 2015 Jul 30;523(7562):541-2. doi: 10.1038/523541a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Friedrich-Alexander-Universitat (FAU) Erlangen-Nurnberg, Erlangen 91058, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26223621" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-14
    Description: Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p - 1 =1(69) x 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of 〈720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |alpha - 1| 〈 8.7 x 10(-7).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ulmer, S -- Smorra, C -- Mooser, A -- Franke, K -- Nagahama, H -- Schneider, G -- Higuchi, T -- Van Gorp, S -- Blaum, K -- Matsuda, Y -- Quint, W -- Walz, J -- Yamazaki, Y -- England -- Nature. 2015 Aug 13;524(7564):196-9. doi: 10.1038/nature14861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN, Ulmer Initiative Research Unit, Wako, Saitama 351-0198, Japan. ; 1] RIKEN, Ulmer Initiative Research Unit, Wako, Saitama 351-0198, Japan [2] CERN, CH-1211 Geneva, Switzerland. ; 1] RIKEN, Ulmer Initiative Research Unit, Wako, Saitama 351-0198, Japan [2] Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. ; 1] RIKEN, Ulmer Initiative Research Unit, Wako, Saitama 351-0198, Japan [2] Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan. ; 1] RIKEN, Ulmer Initiative Research Unit, Wako, Saitama 351-0198, Japan [2] Institut fur Physik, Johannes Gutenberg-Universitat, 55099 Mainz, Germany. ; RIKEN, Atomic Physics Laboratory, Wako, Saitama 351-0198, Japan. ; Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. ; Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan. ; GSI-Helmholtzzentrum fur Schwerionenforschung, 64291 Darmstadt, Germany. ; 1] Institut fur Physik, Johannes Gutenberg-Universitat, 55099 Mainz, Germany [2] Helmholtz Institut Mainz, 55099 Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26268189" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-04
    Description: Recently, the standardized reporting and data system for prostate-specific membrane antigen (PSMA)–targeted PET imaging studies, termed PSMA-RADS version 1.0, was introduced. We aimed to determine the interobserver agreement for applying PSMA-RADS to imaging interpretation of 18 F-DCFPyL (2-(3-{1-carboxy-5-[(6- 18 F-fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) PET examinations in a prospective setting mimicking the typical clinical workflow at a prostate cancer referral center. Methods: Four readers (2 experienced readers (ERs, 〉3 y of PSMA-targeted PET interpretation experience) and 2 inexperienced readers (IRs, 〈1 y of experience)), who had all read the initial publication on PSMA-RADS 1.0, assessed 50 18 F-DCFPyL PET/CT studies independently. Per scan, a maximum of 5 target lesions was selected by the observers, and a PSMA-RADS score for every target lesion was recorded. No specific preexisting conditions were placed on the selection of the target lesions, although PSMA-RADS 1.0 suggests that readers focus on the most avid or largest lesions. An overall scan impression based on PSMA-RADS was indicated, and interobserver agreement rates on a target lesion–based, on an organ-based, and on an overall PSMA-RADS score–based level were computed. Results: The number of target lesions identified by each observer was as follows: ER 1, 123; ER 2, 134; IR 1, 123; and IR 2, 120. Among those selected target lesions, 125 were chosen by at least 2 individual observers (all 4 readers selected the same target lesion in 58 of 125 [46.4%] instances, 3 readers in 40 of 125 [32%], and 2 observers in 27 of 125 [21.6%]). The interobserver agreement for PSMA-RADS scoring among identical target lesions was good (intraclass correlation coefficient [ICC] for 4, 3, and 2 identical target lesions, ≥0.60, respectively). For lymph nodes, an excellent interobserver agreement was derived (ICC, 0.79). The interobserver agreement for an overall scan impression based on PSMA-RADS was also excellent (ICC, 0.84), with a significant difference for ER (ICC, 0.97) vs. IR (ICC, 0.74) ( P = 0.005). Conclusion: PSMA-RADS demonstrated a high concordance rate in this study, even among readers with different levels of experience. This finding suggests that PSMA-RADS can be effectively used for communication with clinicians and can be implemented in the collection of data for large prospective trials.
    Print ISSN: 0022-3123
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-05
    Description: Altered myocardial perfusion is a common finding in chronic Chagas cardiomyopathy (CCC), but its underlying histologic changes have not been elucidated. We investigated the occurrence of myocardial perfusion defects (MPDs) and the correlated regional changes to histology in an experimental model of CCC in hamsters. Methods: Female Syrian hamsters ( n = 34) were infected with 3.5 x 10 4 to 10 5 trypomastigote forms of Trypanosoma cruzi, Y strain, and 6–10 mo afterward underwent in vivo imaging including resting 99m Tc-sestamibi SPECT, segmental and global left ventricular function assessment using 2-dimensional echocardiography, and 18 F-FDG PET for evaluation of myocardial viability. Histologic analysis included quantification of fibrosis, inflammatory infiltration, and the diameter and density of myocardial microcirculation. Results: MPDs were present in 17 (50%) of the infected animals. Histologic analysis revealed no transmural scar in segments with an MPD, and normal or mildly reduced 18 F-FDG uptake, indicating viable myocardium. Infected animals with an MPD, in comparison to infected animals without an MPD and control animals, showed a lower left ventricular ejection fraction ( P = 0.012), a higher wall motion score index ( P = 0.004), and a higher extent of inflammatory infiltration ( P = 0.018) but a similar extent of fibrosis ( P = 0.15) and similar microvascular diameter and density ( P 〉 0.05). Segments with an MPD ( n = 65), as compared with normally perfused regions in the same animal ( n = 156), showed a higher wall motion score index ( P = 0.005) but a similar extent of inflammatory infiltration, a similar extent of fibrosis, and a similar microvascular diameter and density. Conclusion: Resting MPDs are frequent in experimental CCC and are associated with myocardial inflammation but do not designate scar tissue, corresponding to regions with metabolically viable myocardium.
    Print ISSN: 0022-3123
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-09-05
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.8b03367
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-05
    Description: Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-02
    Description: Background/Aim: Synovial sarcoma (SS) is a recalcitrant neoplasm with low chemosensitivity. We recently reported that recombinant methioninase (rMETase) inhibited SS growth in a patient-derived orthotopic xenograft (PDOX) mouse model and was more effective when administered in combination with the first-line drug doxorubicin (DOX). Caffeine enhances the efficacy of anticancer drugs by overcoming drug-induced cell-cycle arrest and increasing subsequent apoptosis. Here, we determined the efficacy of oral recombinant methioninase (o-rMETase) in combined with caffeine on an SS-PDOX model. Materials and Methods: Mice bearing SS-PDOX tumors were randomized into four treatment groups of six: Untreated control; o-rMETase alone; o-rMETase with caffeine; DOX plus o-rMETase with caffeine. Tumor size and body weight were measured during the treatment and plasma L-methionine (MET) levels were measured at the end of treatment. Results: All treatments significantly inhibited SS-PDOX tumor growth. Combining caffeine with o-rMETase was more effective than o-rMETase alone. DOX combined with o-rMETase and caffeine led to regression of SS-PDOX. Plasma MET levels were reduced with o-rMETase treatment. Conclusion: These results suggest that combining o-rMETase and caffeine along with first-line chemotherapy can be highly effective for SS and has clinical potential for this recalcitrant disease.
    Print ISSN: 0250-7005
    Electronic ISSN: 1791-7530
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-16
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.8b07577
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-10-23
    Description: NK cells accumulate in adult murine and human uteri during decidualization induced physiologically, pathologically, or experimentally. Adoptive transfer studies indicate that uterine NK (uNK) cells arise from circulating progenitors. However, virgin uteri contain few circulating NK1.1 + CD49a – conventional NK cells, whereas NK1.1 + CD49a + tissue-resident NK (trNK) cells are abundant. In this study, we employed a novel, immune-competent NK cell–specific reporter mouse to track accumulation of uNK cells during unmanipulated pregnancies. We identified conventional NK and trNK cells accumulating in both decidua basalis and myometrium. Only trNK cells showed evidence of proliferation. In parabiosis studies using experimentally induced deciduomata, the accumulated uNK cells were proliferating trNK cells; migrating NK cells made no contribution. Together, these data suggest proliferating trNK cells are the source of uNK cells during endometrial decidualization.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...