Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-26
    Description: Riboswitches are ligand-binding elements contained within the 5' untranslated regions of bacterial transcripts, which generally regulate expression of downstream open reading frames. Here, we show that in Listeria monocytogenes, a riboswitch that binds vitamin B12 controls expression of a noncoding regulatory RNA, Rli55. Rli55, in turn, controls expression of the eut genes, whose products enable ethanolamine utilization and require B12 as a cofactor. Defects in ethanolamine utilization, or in its regulation by Rli55, significantly attenuate Listeria virulence in mice. Rli55 functions by sequestering the two-component response regulator EutV by means of a EutV-binding site contained within the RNA. Thus, Rli55 is a riboswitch-regulated member of the small group of regulatory RNAs that function by sequestering a protein and reveals a distinctive mechanism of signal integration in bacterial gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mellin, J R -- Koutero, Mikael -- Dar, Daniel -- Nahori, Marie-Anne -- Sorek, Rotem -- Cossart, Pascale -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):940-3. doi: 10.1126/science.1255083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite des Interactions Bacteries-Cellules, Institut Pasteur, F-75015 Paris, France. INSERM, U604, Paris, F-75015 France. INRA, USC2020, F-75015 Paris, France. ; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. ; Unite des Interactions Bacteries-Cellules, Institut Pasteur, F-75015 Paris, France. INSERM, U604, Paris, F-75015 France. INRA, USC2020, F-75015 Paris, France. pcossart@pasteur.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146292" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Animals ; Ethanolamine/*metabolism ; *Gene Expression Regulation, Bacterial ; Listeria monocytogenes/*genetics/metabolism/virology ; Mice ; Mice, Inbred BALB C ; Operon ; RNA, Untranslated/*metabolism ; Response Elements ; *Riboswitch ; Vitamin B 12/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-22
    Description: Intracellular pathogens such as Listeria monocytogenes subvert cellular functions through the interaction of bacterial effectors with host components. Here we found that a secreted listerial virulence factor, LntA, could target the chromatin repressor BAHD1 in the host cell nucleus to activate interferon (IFN)-stimulated genes (ISGs). IFN-lambda expression was induced in response to infection of epithelial cells with bacteria lacking LntA; however, the BAHD1-chromatin associated complex repressed downstream ISGs. In contrast, in cells infected with lntA-expressing bacteria, LntA prevented BAHD1 recruitment to ISGs and stimulated their expression. Murine listeriosis decreased in BAHD1(+/-) mice or when lntA was constitutively expressed. Thus, the LntA-BAHD1 interplay may modulate IFN-lambda-mediated immune response to control bacterial colonization of the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lebreton, Alice -- Lakisic, Goran -- Job, Viviana -- Fritsch, Lauriane -- Tham, To Nam -- Camejo, Ana -- Mattei, Pierre-Jean -- Regnault, Beatrice -- Nahori, Marie-Anne -- Cabanes, Didier -- Gautreau, Alexis -- Ait-Si-Ali, Slimane -- Dessen, Andrea -- Cossart, Pascale -- Bierne, Helene -- 233348/European Research Council/International -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1319-21. doi: 10.1126/science.1200120. Epub 2011 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Unite des Interactions Bacteries Cellules, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Chromatin/*metabolism ; Chromosomal Proteins, Non-Histone/*metabolism ; Down-Regulation ; Gene Expression Profiling ; Gene Expression Regulation ; Host-Pathogen Interactions ; Humans ; Interferons/genetics/immunology/*metabolism ; Interleukins/genetics/immunology/*metabolism ; Listeria monocytogenes/genetics/metabolism/*pathogenicity ; Listeriosis/*immunology/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Molecular Sequence Data ; Signal Transduction ; Virulence Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-03
    Description: Pathogens dramatically affect host cell transcription programs for their own profit during infection, but in most cases, the underlying mechanisms remain elusive. We found that during infection with the bacterium Listeria monocytogenes, the host deacetylase sirtuin 2 (SIRT2) translocates to the nucleus, in a manner dependent on the bacterial factor InlB. SIRT2 associates with the transcription start site of a subset of genes repressed during infection and deacetylates histone H3 on lysine 18 (H3K18). Infecting cells in which SIRT2 activity was blocked or using SIRT2(-/-) mice resulted in a significant impairment of bacterial infection. Thus, SIRT2-mediated H3K18 deacetylation plays a critical role during infection, which reveals an epigenetic mechanism imposed by a pathogenic bacterium to reprogram its host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eskandarian, Haig A -- Impens, Francis -- Nahori, Marie-Anne -- Soubigou, Guillaume -- Coppee, Jean-Yves -- Cossart, Pascale -- Hamon, Melanie A -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):1238858. doi: 10.1126/science.1238858.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite des Interactions Bacteries-Cellules, Institut Pasteur, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908241" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Bacterial Proteins/genetics ; Cell Nucleus/metabolism ; Chromatin/metabolism ; Cytosol/metabolism ; HeLa Cells ; Histones/genetics/*metabolism ; Host-Pathogen Interactions ; Humans ; Listeria monocytogenes/genetics/*pathogenicity ; Listeriosis/*genetics/*metabolism/microbiology ; Lysine/genetics/metabolism ; Membrane Proteins/genetics ; Mice ; Mice, Inbred BALB C ; Mice, Knockout ; Protein Processing, Post-Translational ; Proto-Oncogene Proteins c-met/metabolism ; Sirtuin 2/genetics/*metabolism ; Transcription Initiation Site ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...