Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
  • 2000-2004  (4)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advances in science and technology Vol. 45 (Oct. 2006), p. 643-651 
    ISSN: 1662-0356
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Natural Sciences in General , Technology
    Notes: Ceramic processing without firing, sintering and expensive equipment represents agrowing research field within materials science. With respect to the search of new synthesispathways living nature provides paradigms for procedures that occur at ambient conditions and byapparently simple means. In this connection, biomineralization yields highly complexorganic/inorganic structures, e. g. within nacre or bones. In general, the formation of thesebiominerals involves organic molecules that act as templates during the mineralization of inorganicphases.Bio-inspired ceramic synthesis aims to imitate such principles by technical means. Accordingly,these routes consider the template-induced formation and the structural design of ceramics fromsolutions of suitable metal salts. This paper describes such routes by means of the preparation ofceramics like titania, vanadia, and zinc oxide. The influence of (bio)organic molecules (e. g.polyelectrolytes, self-assembled monolayers, amino acids, peptides and proteins) on the micro- andnanostructure formation and on the evolution of the morphology of these solids will be discussed.Furthermore, mechanical as well as functional properties of the obtained architectures are treated
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The characterization of Si-B-C-N amorphous ceramics using isothermal compression creep testing in the temperature range of 1200°–1500°C is reported. The deformation rate contains a stress-dependent component that is proportional to the applied stress, which indicates that this portion of the deformation mechanism is based on viscous flow. An increase in the creep resistance is observed, following either preliminary annealing or hot isostatic pressing, which may be explained by a reduction of free volume in the amorphous material. The application of two deformation models that are used to predict similar deformation behavior in metallic glasses also is discussed. Although both models accurately predict the time dependence of the deformation rate of precursor-derived amorphous ceramics, the free-volume model fits the observed temperature dependence better than the “two-step” rearrangement model.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A “green” route to ultrahigh-temperature Si–B–C–N ceramic from vacuum-degassing waste gas of polyborosilazane {B[C2H4Si(CH3)NH]3}n (T2-1) has been developed. After gas-to-gel transformation, an amorphous ceramic Si5.3B1.0C19N3.7 was derived from the gel by dehydrocoupling and polymer-to-ceramic transformation. The ceramic started to form a nanostructure at 1700°C and resisted thermal degradation up to 2200°C in argon. This suggests that vacuum-degassing waste gases of polymer precursors may be perfect raw materials for various advanced ceramics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Densification behavior of precursor-derived Si-C-N ceramics by hot isostatic pressing (HIP) has been investigated to obtain dense ceramics derived from polymer precursor. An as-pyrolyzed ceramic monolith, which had a porosity of about 17%, could be deformed up to a strain of 8% in preliminary uniaxial compression tests. The flow stress of the material was much higher than 200 MPa at 1600°C; thus high stress was necessary for densification by HIP. The density of the monolith increased from 1.9 to 2.4 g/cm3 by HIP at 1600°C and 980 MPa. Although the number of pores decreased, large pores were formed in the hot isostatically pressed monolith. On the other hand, denser ceramics, in which pores were not observed by optical microscopy, were obtained by hot isostatically pressing the pyrolyzed powder compact.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Amorphous Si-B-C-N ceramic powder samples obtained by thermolysis of boron-modified polysilazane, {B[C2H4Si(H)NH]3}n, were isothermally annealed at different temperatures (1400–1800°C) and hold times (3, 10, 30, and 100 h). A qualitative and semiquantitative analysis of the crystallization behavior of the materials was performed using X-ray diffraction (XRD). The phase evolution was additionally followed by 11B and 29Si MAS NMR as well as by FT-IR spectroscopy in transmission and diffuse reflection (DRIFTS) modes. Bulk chemical analyses of selected samples were performed to determine changes in the chemistry/phase composition of the materials. It was observed that silicon carbide is the first phase to nucleate around 1400–1500°C, whereas silicon nitride nucleates at and above 1700°C. Crystallization accelerates with increasing annealing temperature and proceeds with increasing annealing time. Furthermore, the surface area of the powders strongly influences the thermal stability of silicon nitride and thus controls overall chemical and phase composition of the materials on thermal treatment.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The chemical stability of an amorphous silicon carbonitride ceramic, having the composition 0.57SiC·0.43Si3N4·0.49C is studied as a function of nitrogen overpressure at 1873 K. The ceramic suffers a weight loss at pN2 〈 3.5 bar (1 bar = 100 kPa), does not show a weight change from 3.5 to 11 bar, and gains weight above 11 bar. The structure of the ceramic changes with pressure: it is crystalline from 1 to 6 bar, amorphous at ∼10 bar, and is crystalline above ∼10 bar. The weight-loss transition, at 3.5 bar, is in excellent agreement with the prediction from thermodynamic analysis when the activities of carbon, SiC, and Si3N4 are set equal to those of the crystalline forms; this implies that the material crystallizes before decomposition. The amorphous to crystalline transition that occurs at ∼10 bar, and which is accompanied by weight gain, is likely to have taken place by a different mechanism. A nucleation and growth reaction with the atmospheric nitrogen is proposed as the likely mechanism. The supersaturation required to nucleate α-Si3N4 crystals is calculated to be 30 kJ/mol.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...