Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
  • 2000-2004  (1)
Collection
Publisher
Years
Year
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Antisense-RNAs have been investigated in detail over the past 20 years as the principal regulators in accessory DNA elements such as plasmids, phages and transposons. However, only a few examples of chromosomally encoded bacterial antisense RNAs were known. Meanwhile, ≈70 small non-coding RNAs from the Escherichia coli genome have been found, the functions of the majority of which remain to be elucidated. Only one systematic search has been performed for Gram-positive bacteria, so far. Here, we report the identification of a novel small (205 nt) non-translated RNA – SR1 – encoded in the Bacillus subtilis genome. SR1 was predicted by a computational approach and verified by Northern blotting. Knockout or overexpression of SR1 did not affect growth. SR1 was derepressed under conditions of gluconeogenesis, but repressed under glycolytic conditions. Two regulatory levels could be identified, one involving CcpA, the second, more important, involving the recently identified regulator CcpN.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Antisense RNAs regulate plasmid replication by several different mechanisms. One of these mechanisms, transcriptional attenuation, was first described for the staphylococcal plasmid pT181, and later for the streptococcal plasmids pIP501 and pAMβ1. Previously, we performed detailed in vitro and in vivo analyses of the pIP501 system. Here, we present an in vitro analysis of the antisense system of plasmid pT181. The secondary structures of antisense and sense RNA species of different lengths were determined. Binding rate constants for sense/antisense RNA pairs were measured, and functional segments required for complex formation were determined. A single-round transcription assay was used for in vitro analysis of transcriptional attenuation. A comparison between pT181 and pIP501 revealed several differences; whereas a truncated derivative of pIP501 antisense RNA was sufficient for stable complex formation, both stem–loop structures of pT181-RNAI were required. In contrast to the sense RNA of pIP501, which showed an intrinsic propensity to terminate (30–50% in the absence of antisense RNA), the sense RNA of pT181 required antisense RNA for induced termination. Rate constants of formation of pT181 sense–antisense RNA complexes were similar to inhibition rate constants, in striking contrast to pIP501, in which inhibition occurred at least 10-fold faster than stable binding.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...