Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Collection
Years
Year
  • 1
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recently, a species-dependent distribution of melatonin binding sites have been found in lamina I–V and lamina X of the spinal cord. In order to learn more about the function of spinal melatonin receptors, we investigated (i) the gene expression for melatonin receptor subtypes in lumbar and thoracal spinal cord tissue by means of the reverse-transcriptase polymerase chain reaction (RT-PCR) technique, and (ii) the electrophysiological and pharmacological properties of melatonin receptors heterologously expressed in Xenopus oocytes after injection of spinal cord mRNA by means of the voltage clamp technique. Because ample evidence indicates an antinociceptive effect of melatonin, (iii) the role of spinal melatonin receptors for maintaining mechanical and thermal hyperalgesia was studied in a rat model for postoperative pain. The RT-PCR data revealed that transcripts for MT1 and MT2 melatonin receptors are present in the dorsal and ventral horn of lumbar and thoracal spinal cord tissue. Injection of mRNA from lumbar spinal cord tissue into Xenopus oocytes led to the functional reconstitution of melatonin receptors which activate calcium-dependent chloride inward currents. Melatonin responses were abolished by simultaneous administration of the antagonists, 2-phenylmelatonin and luzindole and were unaffected by the MT2 antagonist 4-phenyl-2-propionamidotetralin. Intrathecal administration of different melatonin doses (10–100 nmol) did not inhibit mechanical or thermal hyperalgesia. However, intrathecal application of a low dose of morphine together with melatonin caused a brief antinociceptive effect suggesting an enhanced morphine analgesia by melatonin. In conclusion, the present study demonstrated for the first time the presence of transcripts of MT1 and MT2 receptors located in the dorsal and ventral horn of the spinal cord. Furthermore, spinal melatonin enhanced the antinociceptive effect of morphine indicating that melatonin acts as a neuromodulator in the spinal cord.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1600-079X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Melatonin-sensitive receptors were expressed in Xenopus laevis oocytes following an injection of mRNA from rat brain. The administration of 0.1–100 μmol/L melatonin to voltage-clamped oocytes activates calcium-dependent chloride currents via a pertussis toxin-sensitive G protein and the phosphoinositol pathway. To determine which melatonin receptor type (mt1, MT2, MT3) is functionally expressed in the Xenopus oocytes, we used (i) agonists and antagonists of different receptor types to characterize the pharmacological profile of the expressed receptors and (ii) a strategy of inhibiting melatonin receptor function by antisense oligonucleotides. During pharmacological screening administration of the agonists 2-iodomelatonin and 2-iodo-N-butanoyl-5-methoxytryptamine (IbMT) to the oocytes resulted in oscillatory membrane currents, whereas the administration of the MT3 agonist 5-methoxycarbonylamino-N-acetyltryptamine (GR135,531) exerted no detectable membrane currents. The melatonin response was abolished by a preceding administration of the antagonists 2-phenylmelatonin and luzindole but was unaffected by the MT3 antagonist prazosin and the MT2 antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT). In the antisense experiments, in the control group the melatonin response occurred in 45 of 54 mRNA-injected oocytes (83%). Co-injection of the antisense oligonucleotide, corresponding to the mt1 receptor mRNA, caused a marked and significant reduction in the expression level (13%; P〈0.001). In conclusion, the results demonstrate that injection of mRNA from rat brain in Xenopus oocytes induced the expression of the mt1 receptor which is coupled to the phosphoinositol pathway.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...