Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Collection
Years
Year
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using a high resolution two sector field mass spectrometer of reversed geometry we have measured metastable fractions and mass-analyzed ion kinetic energy peaks for metastable decay reactions involving monomer evaporation via (O2)n+*→(O2)n−1++O2. Both, average kinetic energy release 〈KER〉 data derived from the peak shapes and the time dependence of the metastable fractions show a characteristic dependence on cluster size indicating a change in the metastable fragmentation mechanism when going from the dimer to the dekamer ion. Moreover, the 〈KER〉 data contain information about the transition state temperature and thus one can use finite heat bath theory to calculate the binding energies of the decaying cluster ions. The results obtained are in fair agreement with (i) previous results based on gas phase ion equilibria measurements and with (ii) the corresponding bulk value. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 9875-9881 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Electron impact ionization of small singly charged hydrocarbon ions was applied to produce and investigate multiply charged molecular ions. The stability of triply charged hydrocarbon ions depends strongly on the number of hydrogen atoms of the molecule. C4Hj3+ were observed only for molecules that contain more than 2 hydrogen atoms. Parallel, highly correlated ab initio calculations were performed for these molecular ions. The binding energies obtained by these computations agree well with the experimental findings. Moreover, there is quantitative agreement between the experiment and the calculations on the kinetic energy of the fragment ions upon Coulomb explosion. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Appearance energies of all parent ions and several fragment ions produced by electron impact ionization of the isotope systems H2/D2, H2O/D2O, and C6H6/C6D6 were determined with high precision using a dedicated high-resolution electron impact ionization mass spectrometer. The determination of the appearance energies from scans of the ion signal as a function of electron energy in the near-threshold region of each ion utilized a fitting and analysis procedure that has recently been successfully applied to the determination of appearance energies of singly and multiply charged rare-gas ions and several molecular ions and cluster ions. The experimentally determined appearance energies are in good agreement (i) with theoretical calculations that we carried out using standard quantum chemistry codes and (ii) with appearance energy values listed in standard reference data tables (to the extent that tabulated values are available). We find isotope shifts for all three systems ranging from a few meV for the parent ions to a few hundred meV for the fragment ions. The deuterated species always have the higher appearance energy. The present results for H2O/D2O and C6H6/C6D6 do not confirm the larger isotope effects that were reported earlier by Snegursky and Zavilopulo [Nucl. Instrum. Meth. Phys. Res. B 126, 301 (1997)]. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...