Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 13C MAS NMR  (1)
  • Amino acids  (1)
  • carotenoid
  • 1995-1999  (3)
Collection
Publisher
Years
Year
  • 1
    ISSN: 1573-5079
    Keywords: carotenoid ; electron spin resonance ; energy transfer ; geometric isomerization ; optical spectroscopy ; photoprotection ; triplet state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The spectroscopic and photochemical properties of the synthetic carotenoid, locked-15,15′-cis-spheroidene, were studied by absorption, fluorescence, circular dichroism, fast transient absorption and electron spin resonance spectroscopies in solution and after incorporation into the reaction center of Rhodobacter (Rb.) sphaeroides R-26.1. HPLC purification of the synthetic molecule reveals the presence of several di-cis geometric isomers in addition to the mono-cis isomer of locked-15,15′-cis-spheroidene. In solution, the absorption spectrum of the purified mono-cis sample was red-shifted and showed a large cis-peak at 351 nm compared to unlocked all-trans spheroidene. Molecular modeling and semi-empirical calculations reveal how geometric isomerization and structural factors affect the room temperature spectra. The spectroscopic studies of the purified locked-15,15′-mono-cis molecule in solution reveal a more stable manifold of excited states compared to the unlocked spheroidene. Reaction centers of Rb. sphaeroides R-26.1 in which the locked-15,15′-cis-spheroidene was incorporated show no difference in either the spectroscopic properties or photochemistry compared to reaction centers in which unlocked spheroidene was incorporated or to Rb. sphaeroides wild type strain 2.4.1 reaction centers which naturally contain spheroidene. The data suggest that the natural selection of a cis-isomer of spheroidene for incorporation into native reaction centers of Rb. sphaeroides wild type strain 2.4.1 is more determined by the structure or assembly of the reaction center protein than by any special quality of the cis-isomer of the carotenoid that would affect its ability to participate in triplet energy transfer or carry out photoprotection.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: 13C MAS NMR ; EPR ; FTIR ; spheroidene ; stable isotope labelling ; ubiquinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this minireview the information at the atomic level that has been obtained by studying photosynthetic reaction centers with site-directed isotope labelling is discussed. The required isotopically labelled RCs are prepared using isotopically labelled amino acids and cofactors that have been prepared via organic total synthetic chemistry. In some cases the results of isotopically labelled RCs that are prepared via other methods are also discussed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-193X
    Keywords: Amino acids ; Isotopic labelling ; Ethyl benzoate ; Benzonitrile ; Sodium phenylpyruvate ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A synthetic route to stable-isotope-substituted L-phenylalanine is presented, which allows the introduction of 13C, 15N, and deuterium labels at any position or combination of positions. For labelling of the aromatic ring, a synthetic route to ethyl benzoate (or benzonitrile) has been developed, based on the electrocyclic ring-closure of a 1,6-disubstituted hexatriene system, with in situ aromatization by elimination of one (amino) substituent. Several important (highly isotopically enriched) synthons have been prepared, namely benzonitrile, benzaldehyde, ethyl benzoate, and ethyl diphenyloxyacetate. Labelled L-phenylalanines have been synthesized from both aromatic precursors by initial conversion into sodium phenylpyruvate and subsequent transformation of this intermediate into the L-α-amino acid by an enzymatic reductive amination reaction. In this manner, highly enriched phenylalanines are obtained on the 10-gram scale and with high enantiomeric purities (≥ 99% ee). The method has been validated by the synthesis of [1′-13C]-L-Phe and [2-D]-L-Phe. In addition, two methods are described for the introduction of isotopes into L-tyrosine starting from the isotopically enriched precursors benzonitrile and ethyl benzoate.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...