Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 380 (1996), S. 100-100 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - In a recent article, Graeber et al. (Nature 379, 88; 1996) suggested that hypoxia selects for cells deficient in functional p53 tumour suppressor which no longer undergo hypoxia-induced apoptosis. Since the authors demonstrated that cell viability was almost unchanged at O2 concentrations as ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The haematopoietic growth factor erythropoietin is the primary regulator of mammalian erythropoiesis and is produced by the kidney and the liver in an oxygen-dependent manner. We and others have recently demonstrated erythropoietin gene expression in the rodent brain. In this work, we show that cerebral erythropoietin gene expression is not restricted to rodents but occurs also in the primate brain. Erythropoietin mRNA was detected in biopsies from the human hippocampus, amygdala and temporal cortex and in various brain areas of the monkey Macaca mulatta. Exposure to a low level of oxygen led to elevated erythropoietin mRNA levels in the monkey brain, as did anaemia in the mouse brain. In addition, erythropoietin receptor mRNA was detected in all brain biopsies tested from man, monkey and mouse. Analysis of primary cerebral cells isolated from newborn mice revealed that astrocytes, but not microglia cells, expressed erythropoietin. When incubated at 1% oxygen, astrocytes showed 〉l OO-fold time-dependent erythropoietin mRNA accumulation, as measured with the quantitative reverse transcription-polymerase chain reaction. The specificity of hypoxic gene induction in these cells was confirmed by quantitative Northern blot analysis showing hypoxic up-regulation of mRNA encoding the vascular endothelial growth factor, but not of other genes. These findings demonstrate that erythropoietin and its receptor are expressed in the brain of primates as they are in rodents, and that, at least in mice, primary astrocytes are a source of cerebral erythropoietin expression which can be up-regulated by reduced oxygenation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...