Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 34 (1993), S. 4519-4539 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Let ω be a state on the Weyl algebra over a symplectic space. We prove that if either (i) the "liberation'' of ω is pure or (ii) the restriction of ω to each of two generating Weyl subalgebras is quasifree and pure, then ω is quasifree and pure [and, in case (i) is equal to its liberation, in case (ii) is uniquely determined by its restrictions]. [Here, we define the liberation of a (sufficiently regular) state to be the quasifree state with the same two point function.] Results (i) and (ii) permit one to drop the quasifree assumption in a result due to Wald and the author concerning linear scalar quantum fields on space–times with bifurcate Killing horizons and thus to conclude that, on a large subalgebra of the field algebra for such a system, there is a unique stationary state whose two point function has the Hadamard form. The paper contains a number of further related developments including: (a) (i) implies a uniqueness result, e.g., for the usual free field in Minkowski space. We compare and contrast this with other known uniqueness results for this system. (b) A similar pair of results to (i) and (ii) is proven for "quasiFree'' states and "libeRations'' where the definition of quasiFree differs from what we call here quasifree in that nonvanishing one point functions are permitted, and the libeRation of a state is defined to be the quasiFree state with the same one and two point functions. (c) We derive similar results for the canonical anticommutation relations.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0916
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract We study the options for boundary conditions at the conical singularity for quantum mechanics on a two-dimensional cone with deficit angle ≦ 2π and for classical and quantum scalar fields propagating with a translationally invariant dynamics in the 1+3 dimensional spacetime around an idealized straight infinitely long, infinitesimally thin cosmic string. The key to our analysis is the observation that minus-the-Laplacian on a cone possesses a one-parameter family of selfadjoint extensions. These may be labeled by a parameterR with the dimensions of length—taking values in [0, ∞). ForR=0, the extension is positive. WhenR≠0 there is a bound state. Each of our problems has a range of possible dynamical evolutions corresponding to a range of allowedR-values. They correspond to either finite, forR=0, or logarithmically divergent, forR≠0, boundary conditions at zero radius. Non-zeroR-values are a satisfactory replacement for the (mathematically ill-defined) notion of δ-function potentials at the cone's apex. We discuss the relevance of the various idealized dynamics to quantum mechanics on a cone with a rounded-off centre and field theory around a “true” string of finite thickness. Provided one is interested in effects at sufficiently large length scales, the “true” dynamics will depend on the details of the interaction of the wave function with the cone's centre (/field with the string etc.) only through a single parameterR (its “scattering length”) and will be well-approximated by the dynamics for the corresponding idealized problem with the sameR-value. This turns out to be zero if the interaction with the centre is purely gravitational and minimally coupled, but non-zero values can be important to model nongravitational (or non-minimally coupled) interactions. Especially, we point out the relevance of non-zeroR-values to electromagnetic waves around superconducting strings. We also briefly speculate on the relevance of theR-parameter in the application of quantum mechanics on cones to 1+2 dimensional quantum gravity with massive scalars.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...