Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-05
    Description: We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colbourne, John K -- Pfrender, Michael E -- Gilbert, Donald -- Thomas, W Kelley -- Tucker, Abraham -- Oakley, Todd H -- Tokishita, Shinichi -- Aerts, Andrea -- Arnold, Georg J -- Basu, Malay Kumar -- Bauer, Darren J -- Caceres, Carla E -- Carmel, Liran -- Casola, Claudio -- Choi, Jeong-Hyeon -- Detter, John C -- Dong, Qunfeng -- Dusheyko, Serge -- Eads, Brian D -- Frohlich, Thomas -- Geiler-Samerotte, Kerry A -- Gerlach, Daniel -- Hatcher, Phil -- Jogdeo, Sanjuro -- Krijgsveld, Jeroen -- Kriventseva, Evgenia V -- Kultz, Dietmar -- Laforsch, Christian -- Lindquist, Erika -- Lopez, Jacqueline -- Manak, J Robert -- Muller, Jean -- Pangilinan, Jasmyn -- Patwardhan, Rupali P -- Pitluck, Samuel -- Pritham, Ellen J -- Rechtsteiner, Andreas -- Rho, Mina -- Rogozin, Igor B -- Sakarya, Onur -- Salamov, Asaf -- Schaack, Sarah -- Shapiro, Harris -- Shiga, Yasuhiro -- Skalitzky, Courtney -- Smith, Zachary -- Souvorov, Alexander -- Sung, Way -- Tang, Zuojian -- Tsuchiya, Dai -- Tu, Hank -- Vos, Harmjan -- Wang, Mei -- Wolf, Yuri I -- Yamagata, Hideo -- Yamada, Takuji -- Ye, Yuzhen -- Shaw, Joseph R -- Andrews, Justen -- Crease, Teresa J -- Tang, Haixu -- Lucas, Susan M -- Robertson, Hugh M -- Bork, Peer -- Koonin, Eugene V -- Zdobnov, Evgeny M -- Grigoriev, Igor V -- Lynch, Michael -- Boore, Jeffrey L -- P42 ES004699/ES/NIEHS NIH HHS/ -- P42 ES004699-25/ES/NIEHS NIH HHS/ -- P42ES004699/ES/NIEHS NIH HHS/ -- R01 ES019324/ES/NIEHS NIH HHS/ -- R24 GM078274/GM/NIGMS NIH HHS/ -- R24 GM078274-01A1/GM/NIGMS NIH HHS/ -- R24GM07827401/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):555-61. doi: 10.1126/science.1197761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA. jcolbour@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292972" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosome Mapping ; Daphnia/*genetics/physiology ; *Ecosystem ; Environment ; Evolution, Molecular ; Gene Conversion ; Gene Duplication ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes ; Genes, Duplicate ; *Genome ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-03
    Description: Memory stabilization after learning requires translational and transcriptional regulations in the brain, yet the temporal molecular changes that occur after learning have not been explored at the genomic scale. We used ribosome profiling and RNA sequencing to quantify the translational status and transcript levels in the mouse hippocampus after contextual fear conditioning. We revealed three types of repressive regulations: translational suppression of ribosomal protein-coding genes in the hippocampus, learning-induced early translational repression of specific genes, and late persistent suppression of a subset of genes via inhibition of estrogen receptor 1 (ESR1/ERalpha) signaling. In behavioral analyses, overexpressing Nrsn1, one of the newly identified genes undergoing rapid translational repression, or activating ESR1 in the hippocampus impaired memory formation. Collectively, this study unveils the yet-unappreciated importance of gene repression mechanisms for memory formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Jun -- Yu, Nam-Kyung -- Choi, Jun-Hyeok -- Sim, Su-Eon -- Kang, SukJae Joshua -- Kwak, Chuljung -- Lee, Seung-Woo -- Kim, Ji-il -- Choi, Dong Il -- Kim, V Narry -- Kaang, Bong-Kiun -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):82-7. doi: 10.1126/science.aac7368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea. Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea. ; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea. ; Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea. Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea. narrykim@snu.ac.kr kaang@snu.ac.kr. ; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea. narrykim@snu.ac.kr kaang@snu.ac.kr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26430118" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conditioning, Classical ; Estrogen Receptor alpha/*genetics ; Fear ; *Gene Expression Regulation ; Hippocampus/*metabolism ; Male ; Membrane Proteins/*genetics ; *Memory ; Mice ; Mice, Inbred C57BL ; Protein Biosynthesis/*genetics ; Ribosomal Proteins/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-20
    Description: Multivalent molecules with repetitive structures including bacterial capsular polysaccharides and viral capsids elicit antibody responses through B cell receptor (BCR) crosslinking in the absence of T cell help. We report that immunization with these T cell-independent type 2 (TI-2) antigens causes up-regulation of endogenous retrovirus (ERV) RNAs in antigen-specific mouse B cells. These RNAs are detected via a mitochondrial antiviral signaling protein (MAVS)-dependent RNA sensing pathway or reverse-transcribed and detected via the cGAS-cGAMP-STING pathway, triggering a second, sustained wave of signaling that promotes specific immunoglobulin M production. Deficiency of both MAVS and cGAS, or treatment of MAVS-deficient mice with reverse transcriptase inhibitors, dramatically inhibits TI-2 antibody responses. These findings suggest that ERV and two innate sensing pathways that detect them are integral components of the TI-2 B cell signaling apparatus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391621/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391621/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeng, Ming -- Hu, Zeping -- Shi, Xiaolei -- Li, Xiaohong -- Zhan, Xiaoming -- Li, Xiao-Dong -- Wang, Jianhui -- Choi, Jin Huk -- Wang, Kuan-wen -- Purrington, Tiana -- Tang, Miao -- Fina, Maggy -- DeBerardinis, Ralph J -- Moresco, Eva Marie Y -- Pedersen, Gabriel -- McInerney, Gerald M -- Karlsson Hedestam, Gunilla B -- Chen, Zhijian J -- Beutler, Bruce -- P01 AI070167/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 CA157996/CA/NCI NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1486-92. doi: 10.1126/science.346.6216.1486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. ; Department of Pediatrics and Children's Medical Center Research Institute, and McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. ; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA. ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels vag 16, SE-171 77 Stockholm, Sweden. ; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8502, USA. Bruce.Beutler@UTSouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525240" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*immunology ; Animals ; Antibody Formation ; Antigens, T-Independent/*immunology ; B-Lymphocytes/*immunology ; Cytosol/immunology ; DNA/immunology ; Endogenous Retroviruses/genetics/*immunology ; Lymphocyte Activation ; Membrane Proteins/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nucleotides, Cyclic/immunology ; Nucleotidyltransferases/genetics/*immunology ; RNA, Viral/genetics/*immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-29
    Description: Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Ji-Hyuk -- Wang, Han -- Oh, Soong Ju -- Paik, Taejong -- Sung, Pil -- Sung, Jinwoo -- Ye, Xingchen -- Zhao, Tianshuo -- Diroll, Benjamin T -- Murray, Christopher B -- Kagan, Cherie R -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):205-8. doi: 10.1126/science.aad0371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Complex Assemblies of Soft Matter, CNRS-SOLVAY-PENN UMI 3254, Bristol, PA 19007-3624, USA. Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-Gu, Daejeon, 305-350, Korea. ; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Complex Assemblies of Soft Matter, CNRS-SOLVAY-PENN UMI 3254, Bristol, PA 19007-3624, USA. ; Department of Materials Science and Engineering, Yonsei University, Seoul 120-747, Korea. ; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. kagan@seas.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124455" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-27
    Description: Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation.
    Keywords: Neuroscience
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...