Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (4)
  • American Association for the Advancement of Science (AAAS)  (4)
  • 1
    Publication Date: 2013-02-02
    Description: The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604795/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604795/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Regis E -- Kim, Seoyoung -- Obeso, David -- Straight, Paul D -- Winey, Mark -- Dawson, Dean S -- GM-07135/GM/NIGMS NIH HHS/ -- GM087377/GM/NIGMS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM087377/GM/NIGMS NIH HHS/ -- T32 GM007135/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1071-4. doi: 10.1126/science.1232518. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371552" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinases ; Chromosome Segregation/genetics/*physiology ; Chromosomes, Fungal/*genetics ; Intracellular Signaling Peptides and Proteins/genetics/*physiology ; Kinetochores/enzymology ; Meiosis/genetics/*physiology ; Microtubules/enzymology ; Mutation ; Protein-Serine-Threonine Kinases/genetics/*physiology ; Saccharomyces cerevisiae/enzymology/genetics/*physiology ; Saccharomyces cerevisiae Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-07
    Description: Microbial populations stochastically generate variants with strikingly different properties, such as virulence or avirulence and antibiotic tolerance or sensitivity. Photorhabdus luminescens bacteria have a variable life history in which they alternate between pathogens to a wide variety of insects and mutualists to their specific host nematodes. Here, we show that the P. luminescens pathogenic variant (P form) switches to a smaller-cell variant (M form) to initiate mutualism in host nematode intestines. A stochastic promoter inversion causes the switch between the two distinct forms. M-form cells are much smaller (one-seventh the volume), slower growing, and less bioluminescent than P-form cells; they are also avirulent and produce fewer secondary metabolites. Observations of form switching by individual cells in nematodes revealed that the M form persisted in maternal nematode intestines, were the first cells to colonize infective juvenile (IJ) offspring, and then switched to P form in the IJ intestine, which armed these nematodes for the next cycle of insect infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somvanshi, Vishal S -- Sloup, Rudolph E -- Crawford, Jason M -- Martin, Alexander R -- Heidt, Anthony J -- Kim, Kwi-suk -- Clardy, Jon -- Ciche, Todd A -- 1K99 GM097096-01/GM/NIGMS NIH HHS/ -- K99 GM097096/GM/NIGMS NIH HHS/ -- R00 GM097096/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):88-93. doi: 10.1126/science.1216641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22767929" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fimbriae Proteins/genetics ; Gene Expression Regulation, Bacterial ; Genome, Bacterial ; Intestines/microbiology ; Moths/*microbiology ; Mutation ; Phenotype ; Photorhabdus/cytology/*genetics/growth & development/*pathogenicity ; *Promoter Regions, Genetic ; Rhabditoidea/*microbiology ; *Sequence Inversion ; *Symbiosis ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-20
    Description: Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, David A -- Kim, Taeyeon -- Diaz-Martinez, Laura A -- Fair, Joshlean -- Elkahloun, Abdel G -- Harris, Brent T -- Toretsky, Jeffrey A -- Rosenberg, Steven A -- Shukla, Neerav -- Ladanyi, Marc -- Samuels, Yardena -- James, C David -- Yu, Hongtao -- Kim, Jung-Sik -- Waldman, Todd -- CA097257/CA/NCI NIH HHS/ -- R01 CA133662/CA/NCI NIH HHS/ -- R01 CA138212/CA/NCI NIH HHS/ -- R01 CA169345/CA/NCI NIH HHS/ -- R01CA115699/CA/NCI NIH HHS/ -- R21CA143282/CA/NCI NIH HHS/ -- Z01 HG200337-01/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1039-43. doi: 10.1126/science.1203619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852505" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Antigens, Nuclear/*genetics/*physiology ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Chromatids/physiology ; *Chromosomal Instability ; Chromosomes, Human, X/genetics ; Female ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Gene Targeting ; Glioblastoma/*genetics ; Humans ; Karyotyping ; Male ; Melanoma/genetics ; Mutation ; Neoplasms/*genetics ; Polymorphism, Single Nucleotide ; Sarcoma, Ewing/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-14
    Description: Changes in ambient temperature affect flowering time in plants; understanding this phenomenon will be crucial for buffering agricultural systems from the effects of climate change. Here, we show that levels of FLM-beta, an alternatively spliced form of the flowering repressor FLOWERING LOCUS M, increase at lower temperatures, repressing flowering. FLM-beta interacts with SHORT VEGETATIVE PHASE (SVP); SVP is degraded at high temperatures, reducing the abundance of the SVP-FLM-beta repressor complex and, thus, allowing the plant to flower. The svp and flm mutants show temperature-insensitive flowering in different temperature ranges. Control of SVP-FLM-beta repressor complex abundance via transcriptional and splicing regulation of FLM and posttranslational regulation of SVP protein stability provides an efficient, rapid mechanism for plants to respond to ambient temperature changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jeong Hwan -- Ryu, Hak-Seung -- Chung, Kyung Sook -- Pose, David -- Kim, Soonkap -- Schmid, Markus -- Ahn, Ji Hoon -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):628-32. doi: 10.1126/science.1241097. Epub 2013 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, South Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24030492" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Flowers/genetics/*growth & development/metabolism ; Gene Expression Regulation, Plant ; MADS Domain Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Repressor Proteins/genetics/*metabolism ; Temperature ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...