Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a crossed electron beam-atomic beam apparatus which utilizes a pulsed electron gun and field free drift tube to obtain time-of-flight (TOF) spectra of electrons scattered from atoms and molecules. This apparatus was constructed for the purpose of obtaining inelastic-to-elastic differential cross-section (DCS) ratios in the energy range extending from threshold to several eV above the threshold of the inelastic channel. The TOF approach eliminates the need for complicated calibration procedures required when using conventional electrostatic electron energy-loss spectroscopy (EELS) at these low energies. The characteristics of the apparatus will be given, along with representative TOF spectra from carbon monoxide. From those spectra we obtained DCS ratios at 90° scattering angle for excitation of the a3Π state of CO, in the impact energy range of 6–15 eV. These ratios were measured with uncertainties as small as ±4%, which represents a substantial improvement over previous measurements in this energy range. This demonstrates the feasibility of using the TOF technique to measure DCS ratios which in turn can serve as secondary standards to normalize other inelastic DCSs obtained from measurements with EELS. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Advances in magnetoresistive materials have recently enabled magnetic recording heads to achieve higher levels of performance. This article describes why higher signal outputs are necessary for improvements to be made in areal density. The requirements for recording at an areal density of 16 Mb/mm2 (10 Gb/in.2) are discussed with regards to both the channel and the head design. Increased output from new multilayer magnetoresistive materials is required to counteract the decrease in output due to the reduction in the size of the head geometry. An areal density of 16 Mb/mm2 is shown to be feasible with spin valve recording heads using materials with magnetoresistance ratios of 10%. Fabrication issues relating to the manufacturing of these materials are shown to be more stringent than previously required. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...