Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 31 (1988), S. 3473-3479 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The hydrodynamic transport properties of hard-sphere dispersions are calculated for volume fractions (φ) spanning the dilute limit up to the fluid–solid transition at φ=0.49. Particle distributions are generated by a Monte Carlo technique and the hydrodynamic interactions are calculated by Stokesian dynamics simulation. The effects of changing the number of particles in the simulation cell are investigated, and the scaling laws for the finite-size effects are determined. The effects of using various levels of approximation in computing both the far- and near-field hydrodynamic interactions are also examined. The transport properties associated with porous media—permeabilities and hindered diffusion coefficients—are determined here. The corresponding properties of freely mobile suspensions are determined in a companion paper [Phys. Fluids 31, xxxx (1988)].
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 31 (1988), S. 3462-3472 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The hydrodynamic transport properties of hard-sphere dispersions are calculated for volume fractions (φ) spanning the dilute limit up to the fluid–solid transition at φ=0.49. Particle distributions are generated by a Monte Carlo technique and the hydrodynamic interactions are calculated by Stokesian dynamics simulation. The effects of changing the number of particles in the simulation cell are investigated, and the scaling laws for the finite-size effects are derived. The effects of using various levels of approximation in computing both the far- and near-field hydrodynamic interactions are also examined. The transport properties associated with freely mobile suspensions—sedimentation velocities, self-diffusion coefficients, and effective viscosities—are determined here, while the corresponding properties of porous media are determined in a companion paper [Phys. Fluids 31, xxxx (1988)]. Comparison of the simulation results is made with both experiment and theory. In particular, the short-time self-diffusion coefficients and the suspension viscosities are in excellent agreement with experiment.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...