Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Although Cornu Ammonis (CA) 1 neurons of the hippocampus are known to be vulnerable to transient ischaemia, the mechanism of ischaemic neuronal death is still unknown, and there are very few strategies to prevent neuronal death at present. In a previous report we demonstrated μ-calpain activation at the disrupted lysosomal membrane of postischaemic CA1 neurons in the monkey undergoing a complete 20 min whole brain ischaemia. Using the same experimental paradigm, we observed that the enzyme activity of the lysosomal protease cathepsin B increased throughout the hippocampus on days 3–5 after the transient ischaemia. Furthermore, by immunocytochemistry cathepsin B showed presence of extralysosomal immunoreactivity with specific localization to the cytoplasm of CA1 neurons and the neuropil of the vulnerable CA1 sector. When a specific inhibitor of cathepsin B, the epoxysuccinyl peptide CA-074 (C18H29N3O6) was intravenously administered immediately after the ischaemic insult, ≈ 67% of CA1 neurons were saved from delayed neuronal death on day 5 in eight monkeys undergoing 20 min brain ischaemia: the extent of inhibition was excellent in three of eight and good in five of eight monkeys. The surviving neurons rescued by blockade of lysosomal activity, showed mild central chromatolysis and were associated with the decreased immunoreactivity for cathepsin B. These observations indicate that calpain-induced cathepsin B release is crucial for the development of the ischaemic neuronal death, and that a specific inhibitor of cathepsin B is of potential therapeutic utility in ischaemic injuries to the human CNS.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: There is large variability in the various pain responses including those to tissue injury among inbred mouse strains. However, the determinant factors for the strain-specific differences remain unknown. The P2X3 sensory-specific ATP-gated channel has been implicated as a damage-sensing molecule that evokes a pain sensation by receiving endogenous ATP from injured tissue. In this study, to clarify the contribution of the sensory P2X3 signalling to strain-specific differences in tissue injury pain, we examined whether the P2X3-mediated in vivo and in vitro responses in dorsal root ganglion (DRG) neurons are changed in the A/J inbred mouse strain, which is known to be resistant to tissue injury pain caused by formalin. Here we found that A/J mice exhibited a low magnitude of nocifensive behaviour induced by the P2X agonist α,β-methylene ATP (αβmeATP) into the hindpaw compared with C57BL/6 J mice. This behaviour was blocked by P2X3 antisense oligodeoxynucleotides. The low magnitude of the in vivo pain sensation could be observed similarly in the in vitro response; the increase in the intracellular Ca2+ increase by αβmeATP in capsaicin-sensitive DRG neurons from A/J mice was significantly lower than that from C57BL/6 J mice. In A/J DRG neurons the P2X3 protein level was significantly lower compared with C57BL/6 J DRG neurons. The change in P2X3 protein was selective because P2X2 protein was expressed equally in both strains. The present study suggests that the downregulation of sensory P2X3 could be one of the molecular predispositions to low sensitivity to tissue injury pain in the A/J inbred mouse strain.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-06
    Description: Juvenile myelomonocytic leukemia (JMML), a rare and aggressive myelodysplastic/myeloproliferative neoplasm that occurs in infants and during early childhood, is characterized by excessive myelomonocytic cell proliferation. More than 80% of patients harbor germ line and somatic mutations in RAS pathway genes (eg, PTPN11 , NF1 , NRAS , KRAS , and CBL ), and previous studies have identified several biomarkers associated with poor prognosis. However, the molecular pathogenesis of 10% to 20% of patients and the relationships among these biomarkers have not been well defined. To address these issues, we performed an integrated molecular analysis of samples from 150 JMML patients. RNA-sequencing identified ALK/ROS1 tyrosine kinase fusions ( DCTN1-ALK, RANBP2-ALK , and TBL1XR1-ROS1 ) in 3 of 16 patients (18%) who lacked canonical RAS pathway mutations. Crizotinib, an ALK/ROS1 inhibitor, markedly suppressed ALK/ROS1 fusion–positive JMML cell proliferation in vitro. Therefore, we administered crizotinib to a chemotherapy-resistant patient with the RANBP2-ALK fusion who subsequently achieved complete molecular remission. In addition, crizotinib also suppressed proliferation of JMML cells with canonical RAS pathway mutations. Genome-wide methylation analysis identified a hypermethylation profile resembling that of acute myeloid leukemia (AML), which correlated significantly with genetic markers with poor outcomes such as PTPN11/NF1 gene mutations, 2 or more genetic mutations, an AML-type expression profile, and LIN28B expression. In summary, we identified recurrent activated ALK/ROS1 fusions in JMML patients without canonical RAS pathway gene mutations and revealed the relationships among biomarkers for JMML. Crizotinib is a promising candidate drug for the treatment of JMML, particularly in patients with ALK/ROS1 fusions.
    Keywords: Myeloid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-20
    Description: Therapy-related myeloid neoplasms (tMNs) are severe adverse events that can occur after treatment with autologous hematopoietic stem cell transplantation (ASCT). This study aimed to investigate the development of tMNs following ASCT at the molecular level by whole-exome sequencing (WES) and targeted deep sequencing (TDS) in sequential (pre-) tMN samples. WES identified a significantly higher number of mutations in tMNs as compared with de novo myelodysplastic syndrome (MDS) (median 27 vs 12 mutations; P = .001). The mutations found in tMNs did not carry a clear aging-signature, unlike the mutations found in de novo MDS, indicating a different mutational mechanism. In some patients, tMN mutations were identified in both myeloid and T cells, suggesting that tMNs may originate from early hematopoietic stem cells (HSCs). However, the mutational spectra of tMNs and the preceding malignancies did not overlap, excluding common ancestry for these malignancies. By use of TDS, tMN mutations were identified at low variant allele frequencies (VAFs) in transplant material in 70% of the patients with tMNs. Reconstruction of clonal patterns based on VAFs revealed that premalignant clones can be present more than 7 years preceding a tMN diagnosis, a finding that was confirmed by immunohistochemistry on bone marrow biopsies. Our results indicate that tMN development after ASCT originates in HSCs bearing (pre-)tMN mutations that are present years before disease onset and that post-ASCT treatment can influence the selection of these clones. Early detection of premalignant clones and monitoring of their evolutionary trajectory may help to predict the development of tMNs and guide early intervention in the future.
    Keywords: Hematopoiesis and Stem Cells, Transplantation, Free Research Articles, Myeloid Neoplasia, CME article, Clinical Trials and Observations
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...