Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Nerve growth factor (NGF) has a well characterized role in the development of the nervous system and there is evidence that it interacts with nociceptive primary afferent fibres. Here we applied a synthetic tyrosine kinase A IgG (trkA-IgG) fusion molecule for 10–12 days to the innervation territory of the purely cutaneous saphenous nerve in order to bind, and thereby neutralize endogenous NGF in adult rats. Using neurophysiological analysis of 152 nociceptors we now show that sequestration of NGF results in specific changes of their receptive field properties. The percentage of nociceptors responding to heat dropped significantly from a normal 57% to 32%. This was accompanied by a rightward shift and a reduced slope of the stimulus response function relating the intracutaneous temperature to the neural response. The number of nociceptors responding to application of bradykinin was also significantly reduced from a normal of 28% to 8%. In contrast, the threshold for mechanical stimuli and the response to suprathreshold stimuli remained unaltered, as did the percentage of nociceptors responding to noxious cold. The reduced sensitivity of primary afferent nociceptors was accompanied by a reduction in the innervation density of the epidermis by 44% as assessed with quantitative immunocytochemical analysis of the panaxonal marker PGP 9.5. This demonstrates that endogenous NGF in the adult specifically modulates the terminal arborization of unmyelinated fibres and the sensitivity of primary afferent nociceptors to thermal and chemical stimuli in vivo.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Activating transcription factor-3 (ATF3) is a member of the ATF/CREB transcription factor superfamily and is induced in dorsal root ganglion (DRG) cells after nerve injury. In order to study the regulation of ATF3, we have examined the effect of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on ATF3 expression. In untreated rats, sciatic nerve transection induced ATF3 immunoreactivity in 82% of L4 DRG cells at 14 days after axotomy. Intrathecal delivery of NGF or GDNF for 2 weeks commencing immediately after injury reduced the ATF3 expression to 35 and 23% of DRG cells, respectively. Cell size analysis indicated that NGF had protected a population of mainly small- to medium-sized cells, but that the GDNF had protected a population of both small and large cells. This effect was confirmed by double labelling for P2X3, CGRP and 200 kDa neurofilament, markers for small peptide-poor cells, peptide-rich cells and large cells, respectively. Thus GDNF reduced the percentage of ATF3-immunoreactive P2X3 cells from 70 to 4%, and the percentage of ATF3-immunoreactive neurofilament cells from 63 to 24%. NGF was less effective than GDNF in reducing ATF3 expression in these cell types, but reduced the percentage of ATF3-immunoreactive CGRP cells from 10% to 〈 1%. These results show that ATF3 expression in specific populations of DRG cells can be modulated by exogenous supplementation of specific trophic factors, and suggest that ATF3 expression may normally be induced by the loss of target-derived NGF and GDNF.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of applied ichthyology 16 (2000), S. 0 
    ISSN: 1439-0426
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The marine aquaculture industry in Ireland has developed steadily since the early 1980s and currently employs approximately 2500 people with an output valued at some IR£60 (∈76) million. The main species produced are Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), mussels (Mytilus edulis), the Japanese oyster (Crassostrea gigas), the native flat oyster (Ostrea edulis), scallops (Pecten maximus) and clams (Tapes semideccusata). In Ireland, the Department of the Marine and Natural Resources is the sole licensing and regulatory authority for marine aquaculture. Details of the licensing requirements and licence application procedures for both finfish and shellfish farming are presented. The role of the independent Aquaculture Licences Appeals Board is described. In the case of shellfish production, no specific environmental standards have been established and therefore no specific monitoring requirements have been set down. This situation is currently under review. In the case of the production of salmon, environmental standards and monitoring requirements have evolved with time and details of the monitoring programmes focusing on sea lice, impact on the benthos and water column nutrient concentrations are described. Additional monitoring programmes required under various EU Directives are also presented, including biotoxins in shellfish, chemical residues in salmon and the disease status of shellfish and finfish.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...