Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 90 (2004), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Over the past 7 years, there has been spectacular progress in our understanding of the molecular basis of the circadian pacemaker in many species, from yeast to mammals. However, the biochemical signalling mechanisms that underpin synchronization of the clock to environmental cues are still poorly understood. Recently, attention has been focused on the role of mitogen-activated protein (MAP) kinase in biological timekeeping. It has been proposed that signal transduction via the MAP kinase cascades allows environmental information to be assimilated intracellularly within the circadian clock to produce changes in the phasing of clock gene expression, which, in turn, underlies clock-controlled phase-resetting of biological rhythms. This review examines the evidence for MAP kinase, particularly extracellular regulated kinases 1/2, involvement in the circadian clock and looks at the putative upstream regulators and downstream substrates of this signalling system.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It is well-established that light pulses regulate components of the extracellular signal-regulated kinases I/II (ERK) cascade in the suprachiasmatic nuclei (SCN) circadian clock. These events are important for photic-resetting of the circadian clock. The SCN circadian clock is also reset by pulses of dark, but it is unknown if this stimulus alters the activity of ERK, the transcription factor Elk-1 or expression of the immediate early gene c-fos in the SCN. Using Syrian hamsters free-running in constant light, we determined the effects of dark pulses on these factors in the SCN. In constant light, levels of phosphorylated ERK (P-ERK) showed significant circadian variation in the Syrian hamster SCN, while levels of c-Fos or phosphorylated Elk-1 (P-Elk-1) did not. A 6-h dark pulse beginning at circadian time (CT) 8 down-regulated expression of P-ERK and c-Fos, but not P-Elk-1, in the SCN. Following termination of the pulse, levels of c-Fos increased above time-matched control values, while P-ERK expression did not. When given at the beginning of the subjective night (CT13), a 6-h dark pulse did not phase-shift behavioural rhythms and failed to alter the expression of c-Fos, P-ERK, or P-Elk-1 in the SCN. At the level of the visual thalamus, expression of c-Fos in the intergeniculate leaflet was higher during the subjective night as compared to the subjective day, although dark pulses had no robust effects on expression of c-Fos or P-ELK-1 in this structure. We conclude that dark-pulse resetting of the circadian clock is complex and involves both non-photic and photic components.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...