Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Oxidative stress induced by acute complex I inhibition with 1-methyl-4-phenylpyridinium ion activated biphasically the stress-activated c-Jun N-terminal kinase (JNK) and the early transcription factor nuclear factor-κB (NF-κB) in SH-SY5Y neuroblastoma cells. Early JNK activation was dependent on mitochondrial adenine nucleotide translocator (ANT) activity, whereas late-phase JNK activation and the cleavage of signaling proteins Raf-1 and mitogen-activated protein kinase (MAPK) kinase (MEK) kinase (MEKK)-1 appeared to be ANT-independent. Early NF-κB activation depended on MEK, later activation required an intact electron transport chain (ETC), and Parkinson's disease (PD) cybrid (mitochondrial transgenic cytoplasmic hybrid) cells had increased basal NF-κB activation. Mitochondria appear capable of signaling ETC impairment through MAPK modules and inducing protective NF-κB responses, which are increased by PD mitochondrial genes amplified in cybrid cells. Irreversible commitment to apoptosis in this cell model may derive from loss of Raf-1 and cleavage/activation of MEKK-1, processes reported in other models to be caspase-mediated. Therapeutic strategies that reduce mitochondrial activation of proapoptotic MAPK modules, i.e., JNK, and enhance survival pathways, i.e., NF-κB, may offer neuroprotection in this debilitating disease.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...