Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-17
    Description: Shuang Li, Yong Suk Cho, Bing Wang, Shuangxi Li, and Jin Jiang Hedgehog (Hh) transduces signals by promoting cell surface accumulation and activation of the G-protein-coupled receptor (GPCR)-family protein Smoothened (Smo) in Drosophila , but the molecular mechanism underlying the regulation of Smo trafficking remains poorly understood. Here, we identified the Cul4–DDB1 E3 ubiquitin ligase complex as being essential for Smo ubiquitylation and cell surface clearance. We found that the C-terminal intracellular domain of Smo recruits Cul4–DDB1 through the β subunit of trimeric G protein (Gβ), and that Cul4–DDB1–Gβ promotes the ubiquitylation of both Smo and its binding partner G-protein-coupled-receptor kinase 2 (Gprk2) and induces the internalization and degradation of Smo. Hh dissociates Cul4–DDB1 from Smo by recruiting the catalytic subunit of protein kinase A (PKA) to phosphorylate DDB1, which disrupts its interaction with Gβ. Inactivation of the Cul4–DDB1 complex resulted in elevated Smo cell surface expression, whereas an excessive amount of Cul4–DDB1 blocked Smo accumulation and attenuated Hh pathway activation. Taken together, our study identifies an E3 ubiquitin ligase complex targeting Smo for ubiquitylation and provides new insight into how Hh signaling regulates Smo trafficking and cell surface expression.
    Keywords: Ubiquitin
    Print ISSN: 0021-9533
    Electronic ISSN: 1477-9137
    Topics: Biology , Medicine
    Published by Company of Biologists
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-03
    Description: Adult stem cells maintain tissue homeostasis. This unique capability largely depends on the stem cell niche, a specialized microenvironment, which preserves stem cell identity through physical contacts and secreted factors. In many cancers, latent tumor cell niches are thought to house stem cells and aid tumor initiation. However, in developing tissue and cancer it is unclear how the niche is established. The well-characterized germline stem cells (GSCs) and niches in the Drosophila melanogaster ovary provide an excellent model to address this fundamental issue. As such, we conducted a small-scale RNAi screen of 560 individually expressed UAS-RNAi lines with targets implicated in female fertility. RNAi was expressed in the soma of larval gonads, and screening for reduced egg production and abnormal ovarian morphology was performed in adults. Twenty candidates that affect ovarian development were identified and subsequently knocked down in the soma only during niche formation. Feminization factors (Transformer, Sex lethal, and Virilizer), a histone methyltransferase (Enhancer of Zeste), a transcriptional machinery component (Enhancer of yellow 1), a chromatin remodeling complex member (Enhancer of yellow 3) and a chromosome passenger complex constituent (Incenp) were identified as potentially functioning in the control of niche size. The identification of these molecules highlights specific molecular events that are critical for niche formation and will provide a basis for future studies to fully understand the mechanisms of GSC recruitment and maintenance.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...