Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2018-07-03
    Description: Glycerol plays an important role in the adaptation of fungi to various microenvironments and stressors, including heat shock, anoxic conditions and osmotic stress. Glycerol 3-phosphate dehydrogenase (G3PDH) is able to catalyze dihydroxyacetone phosphate to glycerol 3-phosphate (G3P), which is subsequently dephosphorylated into glycerol. However, current knowledge about the functions of G3PDH homologs in glycerol biosynthesis in Aspergillus fumigatus is limited. Here, we show that the A. fumigatus G3PDH gene, gfdA , is crucial for normal colony growth in glucose media under both normoxic and hypoxic conditions. In addition, failure of the overexpression of the gfdA homolog, gfdB , to rescue the phenotype of a gfdA null mutant suggests that gfdA plays a predominant role in the synthesis of G3P and glycerol. However, in a wild-type background, overexpressing either gfdA or gfdB is able to significantly enhance biomass production of mycelia, suggesting that gfdA and gfdB have similar functions in promoting the use of glucose. Interestingly, overexpression of the gene encoding the predicted glycerol kinase, GlcA, which is capable of phosphorylating glycerol to form G3P, significantly rescues the growth defects of gfdA null mutants in glucose media, indicating that the growth defects of gfdA null mutants might be due to the absence of G3P rather than glycerol. Moreover, Western blotting analysis revealed that gfdA is inducibly expressed by osmotic mediators. However, in the absence of gfdA , osmotic stress can rescue colony growth defects and allow colonies to partially bypass the gfdA requirement in a high osmolarity glycerol pathway-dependent manner. Therefore, the findings of this study elucidate how saprophytic filamentous fungi have developed pathways distinct from those of budding yeasts to adapt to varied carbon sources and survive environmental stresses.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-07
    Description: The plant circadian clock allows the synchronization of internal physiological responses to match the predicted environment. HSP90.2 is a molecular chaperone that has been previously described as required for the proper functioning of the Arabidopsis oscillator under both ambient and warm temperatures. Here, we have characterized the circadian phenotype of the hsp90.2-3 mutant. As previously reported using pharmacological or RNA interference inhibitors of HSP90 function, we found that hsp90.2-3 lengthens the circadian period and that the observed period lengthening was more exaggerated in warm–cold-entrained seedlings. However, we observed no role for the previously identified interactors of HSP90.2, GIGANTEA and ZEITLUPPE, in HSP90 -mediated period lengthening. We constructed phase-response curves (PRCs) in response to warmth pulses to identify the entry point of HSP90.2 to the oscillator. These PRCs revealed that hsp90.2-3 has a circadian defect within the morning. Analysis of the cca1 , lhy , prr9 , and prr7 mutants revealed a role for CCA1, LHY, and PRR7, but not PRR9, in HSP90.2 action to the circadian oscillator. Overall, we define a potential pathway for how HSP90.2 can entrain the Arabidopsis circadian oscillator.
    Print ISSN: 0016-6731
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...