Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-10-03
    Description: Obesity is associated with cancer risk and its link with liver cancer is particularly strong. Obesity causes non-alcoholic fatty liver disease (NAFLD) that could progress to hepatocellular carcinoma (HCC). Chronic inflammation likely plays a key role. We carried out a bioassay in the high-fat diet (HFD)-fed C57BL/6J mice to provide insight into the mechanisms of obesity-related HCC by studying -OHPdG, a mutagenic DNA adduct derived from lipid peroxidation. In an 80-week bioassay, mice received a low-fat diet (LFD), high-fat diet (HFD), and HFD with 2% Theaphenon E (TE) (HFD+TE). HFD mice developed a 42% incidence of HCC and LFD mice a 16%. Remarkably, TE, a standardized green tea extract formulation, completely blocked HCC in HFD mice with a 0% incidence. -OHPdG measured in the hepatic DNA of mice fed HFD and HFD+TE showed its levels increased during the early stages of NAFLD in HFD mice and the increases were significantly suppressed by TE, correlating with the tumor data. Whole-exome sequencing showed an increased mutation load in the liver tumors of HFD mice with G〉A and G〉T as the predominant mutations, consistent with the report that -OHPdG induces G〉A and G〉T. Furthermore, the mutation loads were significantly reduced in HFD+TE mice, particularly G〉T, the most common mutation in human HCC. These results demonstrate in a relevant model of obesity-induced HCC that -OHPdG formation during fatty liver disease may be an initiating event for accumulated mutations that leads to HCC and this process can be effectively inhibited by TE. Cancer Prev Res; 11(10); 665–76. ©2018 AACR .
    Print ISSN: 1940-6207
    Electronic ISSN: 1940-6215
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-16
    Description: Purpose: Small cell lung cancer (SCLC) is an aggressive malignancy with a critical need for novel therapies. Our goal was to determine whether PARP inhibition could sensitize SCLC cells to ionizing radiation (IR) and if so, to determine the contribution of PARP trapping to radiosensitization. Experimental Design: Short-term viability assays and clonogenic survival assays (CSA) were used to assess radiosensitization in 6 SCLC cell lines. Doses of veliparib and talazoparib with equivalent enzymatic inhibitory activity but differing PARP trapping activity were identified and compared in CSAs. Talazoparib, IR, and their combination were tested in three patient-derived xenograft (PDX) models. Results: Talazoparib radiosensitized 5 of 6 SCLC cell lines in short-term viability assays and confirmed in 3 of 3 cell lines by CSAs. Concentrations of 200 nmol/L talazoparib and 1,600 nmol/L veliparib similarly inhibited PAR polymerization; however, talazoparib exhibited greater PARP trapping activity that was associated with superior radiosensitization. This observation further correlated with an increased number of double-stranded DNA breaks induced by talazoparib as compared with veliparib. Finally, a dose of 0.2 mg/kg talazoparib in vivo caused tumor growth inhibition in combination with IR but not as a single agent in 3 SCLC PDX models. Conclusions: PARP inhibition effectively sensitizes SCLC cell lines and PDXs to IR, and PARP trapping activity enhances this effect. PARP inhibitors, especially those with high PARP trapping activity, may provide a powerful tool to improve the efficacy of radiotherapy in SCLC. Clin Cancer Res; 24(20); 5143–52. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-02
    Description: Nonclustered protocadherins (PCDH) family is a group of cell–cell adhesion molecules. We have found differentially methylated genes in the nonclustered PCDHs family associated with Helicobacter pylori ( H. pylori ) infection in prior genome-wide methylation analysis. To further investigate the methylation and expression of nonclustered PCDHs encoding genes in H. pylori- -related gastric carcinogenesis process, four candidate genes including PCDH7, PCDH10, PCDH17, and PCDH20 were selected, which were reported to be tumor suppressors for digestive cancers. A total of 747 participants with a spectrum of gastric lesions were enrolled from a high-risk population of gastric cancer. Promoter methylation levels of four genes were significantly higher in H. pylori– positive subjects than the negative group (all P 〈 0.001). Elevated methylation levels of PCDH10 and PCDH17 were observed with the increasing severity of gastric lesions (both P trend 〈 0.001). In the protein expression analysis, PCDH17 expression was inversely associated with gastric lesions; the OR [95% confidence interval (CI)] was 0.49 (0.26–0.95) for chronic atrophic gastritis (CAG), 0.31 (0.15–0.63) for intestinal metaplasia, and 0.38 (0.19–0.75) for indefinite dysplasia and dysplasia, compared with superficial gastritis. In addition, PCDH10 expression was significantly lower in CAG (OR, 0.40; 95% CI, 0.24–0.68). The inverse association between methylation and protein expression of PCDH10 and PCDH1 7 was further supported when we explored the methylation and mRNA expression in The Cancer Genome Atlas database (all P 〈 0.001). Our study found elevated promoter methylation and decreased expression of PCDH10 and PCDH17 in advanced gastric lesions, suggesting that elevated PCDH10 and PCDH17 methylation may be an early event in gastric carcinogenesis. Cancer Prev Res; 11(11); 717–26. ©2018 AACR .
    Print ISSN: 1940-6207
    Electronic ISSN: 1940-6215
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-15
    Description: Purpose: Epigenetic alterations play important roles in metastasis and drug resistance through gene regulation. However, the functional features and molecular mechanisms of epigenetic changes remain largely unclear in nasopharyngeal carcinoma (NPC) metastasis. Experimental Design: Gene regulatory network analysis was used to identify metastatic-specific dysregulated genes between normal and NPC tissues and the expression was validated in published Gene-Expression Omnibus data set. The regulatory and functional role of RAB37 downregulation was examined in NPC and was validated in vitro and in vivo , and downstream target of RAB37 was explored. The clinical value of RAB37 methylation was evaluated in NPC metastasis and chemosensitivity. Results: We identified RAB37 as a specific hypermethylated gene that is most commonly downregulated in NPC. Moreover, RAB37 downregulation was attributed to hypermethylation of its promoter and was significantly associated with metastasis- and docetaxel chemoresistance-related features in NPC. Ectopic RAB37 overexpression suppressed NPC cell metastasis and enhanced chemosensitivity to docetaxel. Mechanistically, RAB37 colocalized with TIMP2, regulated TIMP2 secretion, inhibited downstream MMP2 activity, and consequently altered NPC cell metastasis. Furthermore, RAB37 hypermethylation was correlated with poor clinical outcomes in patients with NPC. We developed a prognostic model based on RAB37 methylation and N stage that effectively predicted an increased risk of distant metastasis and a favorable response to docetaxel-containing induction chemotherapy (IC) in NPC patients. Conclusions: This study shows that RAB37 hypermethylation is involved in NPC metastasis and chemoresistance, and that our prognostic model can identify patients who are at a high risk of distant metastasis and might benefit from for docetaxel IC.
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-14
    Description: Purpose: Because of the uneven geographic distribution and small number of randomized trials available, the value of additional induction chemotherapy (IC) to concurrent chemoradiotherapy (CCRT) in nasopharyngeal carcinoma (NPC) remains controversial. This study performed an individual patient data (IPD) pooled analysis to better assess the precise role of IC + CCRT in locoregionally advanced NPC. Experimental Design: Four randomized trials in endemic areas were identified, representing 1,193 patients; updated IPD were obtained. Progression-free survival (PFS) and overall survival (OS) were the primary and secondary endpoints, respectively. Results: Median follow-up was 5.0 years. The HR for PFS was 0.70 [95% confidence interval (CI), 0.56–0.86; P = 0.0009; 9.3% absolute benefit at 5 years] in favor of IC + CCRT versus CCRT alone. IC + CCRT also improved OS (HR = 0.75; 95% CI, 0.57–0.99; P = 0.04) and reduced distant failure (HR = 0.68; 95% CI, 0.51–0.90; P = 0.008). IC + CCRT had a tendency to improve locoregional control compared with CCRT alone (HR = 0.70; 95% CI, 0.48–1.01; P = 0.06). There was no heterogeneity between trials in any analysis. No interactions between patient characteristics and treatment effects on PFS or OS were found. After adding two supplementary trials to provide a more comprehensive overview, the conclusions remained valid and were strengthened. In a supplementary Bayesian network analysis, no statistically significant differences in survival between different IC regimens were detected. Conclusions: This IPD pooled analysis demonstrates the superiority of additional IC over CCRT alone in locoregionally advanced NPC, with the survival benefit mainly associated with improved distant control. Clin Cancer Res; 24(8); 1824–33. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-16
    Description: Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)–GPRC6A–CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo . Results: We uncovered that activation of the AKT–RUNX2–OCN–GPRC6A–CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo . Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834–46. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-09
    Description: Mounting evidence suggests that the Hippo coactivator Yes-associated protein 1 (YAP1) is a major mediator of cancer stem cell (CSC) properties, tumor progression, and therapy resistance as well as often a terminal node of many oncogenic pathways. Thus, targeting YAP1 may be a novel therapeutic strategy for many types of tumors with high YAP1 expression, including esophageal adenocarcinoma. However, effective YAP1 inhibitors are currently lacking. Here, we identify a small molecule (CA3) that not only has remarkable inhibitory activity on YAP1/Tead transcriptional activity but also demonstrates strong inhibitory effects on esophageal adenocarcinoma cell growth especially on YAP1 high–expressing esophageal adenocarcinoma cells both in vitro and in vivo . Remarkably, radiation-resistant cells acquire strong cancer stem cell (CSC) properties and aggressive phenotype, while CA3 can effectively suppress these phenotypes by inhibiting proliferation, inducing apoptosis, reducing tumor sphere formation, and reducing the fraction of ALDH1 + cells. Furthermore, CA3, combined with 5-FU, synergistically inhibits esophageal adenocarcinoma cell growth especially in YAP1 high esophageal adenocarcinoma cells. Taken together, these findings demonstrated that CA3 represents a new inhibitor of YAP1 and primarily targets YAP1 high and therapy-resistant esophageal adenocarcinoma cells endowed with CSC properties. Mol Cancer Ther; 17(2); 443–54. ©2017 AACR .
    Print ISSN: 1535-7163
    Electronic ISSN: 1538-8514
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...