Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-12-11
    Description: Trafficking of dendritic cells (DCs) to lymph nodes (LNs) to present Ags is a crucial step in the pathogenesis of rheumatoid arthritis (RA). Matrix metalloproteinase-9 (MMP-9) is the key molecule for DC migration. Thus, blocking MMP-9 to inhibit DC migration may be a novel strategy to treat RA. In this study, we used anti–MMP-9 Ab to treat collagen-induced arthritis (CIA) in DBA/1J mice and demonstrated that anti–MMP-9 Ab treatment significantly suppressed the development of CIA via the modulation of DC trafficking. In anti–MMP-9 Ab–treated CIA mice, the number of DCs in draining LNs was obviously decreased. In vitro, anti–MMP-9 Ab and MMP-9 inhibitor restrained the migration of mature bone marrow–derived DCs in Matrigel in response to CCR7 ligand CCL21. In addition, blocking MMP-9 decreased T and B cell numbers in LNs of CIA mice but had no direct influence on the T cell response to collagen II by CD4 + T cells purified from LNs or spleen. Besides, anti–MMP-9 Ab did not impact on the expression of MHC class II, CD40, CD80, CD86, and chemokine receptors (CCR5 and CCR7) of DCs both in vivo and in vitro. Furthermore, we discovered the number of MMP-9 –/– DCs trafficking from footpads to popliteal LNs was dramatically reduced as compared with wild type DCs in both MMP-9 –/– mice and wild type mice. Taken together, these results indicated that DC-derived MMP-9 is the crucial factor for DC migration, and blocking MMP-9 to inhibit DC migration may constitute a novel strategy of future therapy for RA and other similar autoimmune diseases.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-11
    Description: Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2 Cre/Cre Mcl1 flox/flox ( Mcl1 Myelo ) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1 Myelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1 Myelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1 Myelo mice from arthritis development in the K/B x N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1 Myelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8 -Cre Mcl1 flox/flox ( Mcl1 PMN ) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1 Myelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-10
    Description: The Fas receptor/ligand system plays a prominent role in hepatic apoptosis and hepatocyte death. Although hepatitis B virus (HBV) surface Ag (HBsAg) is the most abundant HBV protein in the liver and peripheral blood of patients with chronic HBV infection, its role in Fas-mediated hepatocyte apoptosis has not been disclosed. In this study, we report that HBsAg sensitizes HepG2 cells to agonistic anti-Fas Ab CH11-induced apoptosis through increasing the formation of SDS-stable Fas aggregation and procaspase-8 cleavage but decreasing both the expression of cellular FLIP L/S and the recruitment of FLIP L/S at the death-inducing signaling complex (DISC). Notably, HBsAg increased endoplasmic reticulum stress and consequently reduced AKT phosphorylation by deactivation of phosphoinositide-dependent kinase-1 (PDPK1) and mechanistic target of rapamycin complex 2 (mTORC2), leading to enhancement of Fas-mediated apoptosis. In a mouse model, expression of HBsAg in mice injected with recombinant adenovirus-associated virus 8 aggravated Jo2-induced acute liver failure, which could be effectively attenuated by the AKT activator SC79. Based on these results, it is concluded that HBsAg predisposes hepatocytes to Fas-mediated apoptosis and mice to acute liver failure via suppression of AKT prosurviving activity, suggesting that interventions directed at enhancing the activation or functional activity of AKT may be of therapeutic value in Fas-mediated progressive liver cell injury and liver diseases.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-07
    Description: Hermansky–Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in HPS-1 and HPS-4 patients. However, the mechanisms that underlie the exaggerated injury and fibroproliferative repair responses in HPS have not been adequately defined. In particular, although Galectin-3 (Gal-3) is dysregulated in HPS, its roles in the pathogenesis of HPS have not been adequately defined. In addition, although chitinase 3-like 1 (CHI3L1) and its receptors play major roles in the injury and repair responses in HPS, the ability of Gal-3 to interact with or alter the function of these moieties has not been evaluated. In this article, we demonstrate that Gal-3 accumulates in exaggerated quantities in bronchoalveolar lavage fluids, and traffics abnormally and accumulates intracellularly in lung fibroblasts and macrophages from bleomycin-treated pale ear, HPS-1–deficient mice. We also demonstrate that Gal-3 drives epithelial apoptosis when in the extracellular space, and stimulates cell proliferation and myofibroblast differentiation when accumulated in fibroblasts and M2-like differentiation when accumulated in macrophages. Biophysical and signaling evaluations also demonstrated that Gal-3 physically interacts with IL-13Rα2 and CHI3L1, and competes with TMEM219 for IL-13Rα2 binding. By doing so, Gal-3 diminishes the antiapoptotic effects of and the antiapoptotic signaling induced by CHI3L1 in epithelial cells while augmenting macrophage Wnt/β-catenin signaling. Thus, Gal-3 contributes to the exaggerated injury and fibroproliferative repair responses in HPS by altering the antiapoptotic and fibroproliferative effects of CHI3L1 and its receptor complex in a tissue compartment-specific manner.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...