Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Biological Evolution  (2)
  • *Allosteric Regulation  (1)
  • American Association for the Advancement of Science (AAAS)  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2013-03-16
    Description: Recent discoveries of large leg feathers in some theropods have implications for our understanding of the evolution of integumentary features on the avialan leg, and particularly of their relevance for the origin of avialan flight. Here we report 11 basal avialan specimens that will greatly improve our knowledge of leg integumentary features among early birds. In particular, they provide solid evidence for the existence of enlarged leg feathers on a variety of basal birds, suggest that extensively scaled feet might have appeared secondarily at an early stage in ornithuromorph evolution, and demonstrate a distal-to-proximal reduction pattern for leg feathers in avialan evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Xiaoting -- Zhou, Zhonghe -- Wang, Xiaoli -- Zhang, Fucheng -- Zhang, Xiaomei -- Wang, Yan -- Wei, Guangjin -- Wang, Shuo -- Xu, Xing -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1309-12. doi: 10.1126/science.1228753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, China. ty4291666@163.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493711" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*anatomy & histology ; Feathers/*anatomy & histology ; *Fossils ; Hindlimb/*anatomy & histology ; Wings, Animal/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-30
    Description: Ricklefs and Renner (Reports, 27 January 2012, p. 464) found significant correlations for abundances and species diversities of families and orders of trees on different continents, which they suggested falsifies the neutral theory of biodiversity (NTB). We argue that the correlations among families and orders and the lack of correlations among genera can be explained by the NTB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Anping -- Wang, Shaopeng -- Pacala, Stephen W -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1639; author reply 1639. doi: 10.1126/science.1222534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. anpingc@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745403" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Biological Evolution ; *Ecosystem ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-16
    Description: Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangjin -- Brostromer, Erik -- Xing, Dong -- Jin, Jianshi -- Chong, Shasha -- Ge, Hao -- Wang, Siyuan -- Gu, Chan -- Yang, Lijiang -- Gao, Yi Qin -- Su, Xiao-dong -- Sun, Yujie -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413354" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Base Sequence ; Binding Sites ; DNA, B-Form/*chemistry ; DNA-Binding Proteins/*chemistry ; DNA-Directed RNA Polymerases/chemistry ; Escherichia coli/genetics/metabolism ; Gene Expression ; *Gene Expression Regulation, Bacterial ; Lac Repressors/chemistry ; Molecular Dynamics Simulation ; Nucleosomes/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/chemistry ; Transcription Factors/*chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...