Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 352 (1995), S. 441-448 
    ISSN: 1434-601X
    Keywords: 21.65+f ; 11.30Rd
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In a simple version of the nonlinear σ model the nuclear matter behaves as a system of nucleons interacting via two-body forces with a radius which decreases with increasing density. This allows us to apply the Khodel-Shaginyan method which is adjusted to our approach by taking into account the pseudoscalar-isovector symmetry of pion field and both the scalar and pseudoscalar effective interactions. In contrast to the QHD [1] there is no vacuum corrections in our approach.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-05
    Description: Whereas the cellular basis of the hematopoietic stem cell (HSC) niche in the bone marrow has been characterized, the nature of the fetal liver niche is not yet elucidated. We show that Nestin(+)NG2(+) pericytes associate with portal vessels, forming a niche promoting HSC expansion. Nestin(+)NG2(+) cells and HSCs scale during development with the fractal branching patterns of portal vessels, tributaries of the umbilical vein. After closure of the umbilical inlet at birth, portal vessels undergo a transition from Neuropilin-1(+)Ephrin-B2(+) artery to EphB4(+) vein phenotype, associated with a loss of periportal Nestin(+)NG2(+) cells and emigration of HSCs away from portal vessels. These data support a model in which HSCs are titrated against a periportal vascular niche with a fractal-like organization enabled by placental circulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706788/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706788/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, Jalal A -- Mendelson, Avital -- Kunisaki, Yuya -- Birbrair, Alexander -- Kou, Yan -- Arnal-Estape, Anna -- Pinho, Sandra -- Ciero, Paul -- Nakahara, Fumio -- Ma'ayan, Avi -- Bergman, Aviv -- Merad, Miriam -- Frenette, Paul S -- CA164468/CA/NCI NIH HHS/ -- DA033788/DA/NIDA NIH HHS/ -- DK056638/DK/NIDDK NIH HHS/ -- F30 943257/PHS HHS/ -- F32 HL123224/HL/NHLBI NIH HHS/ -- HL069438/HL/NHLBI NIH HHS/ -- HL097700/HL/NHLBI NIH HHS/ -- R01 CA173861/CA/NCI NIH HHS/ -- R01 CA190400/CA/NCI NIH HHS/ -- R01 DA033788/DA/NIDA NIH HHS/ -- R01 DK056638/DK/NIDDK NIH HHS/ -- R01 HL069438/HL/NHLBI NIH HHS/ -- R01 HL116340/HL/NHLBI NIH HHS/ -- R01GM098316/GM/NIGMS NIH HHS/ -- T32 063754/PHS HHS/ -- U54 HL127624/HL/NHLBI NIH HHS/ -- U54CA189201/CA/NCI NIH HHS/ -- U54HL127624/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 8;351(6269):176-80. doi: 10.1126/science.aad0084. Epub 2015 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. ; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. ; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA. ; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research. Albert Einstein College of Medicine, Bronx, NY, USA. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. paul.frenette@einstein.yu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26634440" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/analysis ; Ephrin-B2/analysis ; Female ; Hematopoietic Stem Cells/*physiology ; Liver/blood supply/*embryology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nestin/analysis ; Neuropilin-1/analysis ; Placental Circulation ; Portal System/chemistry/*embryology ; Pregnancy ; Proteoglycans/analysis ; Receptor, EphB4/analysis ; Stem Cell Niche/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...