Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EXPRESSION  (2)
  • 78.90. + t  (1)
  • 1
    Keywords: EXPRESSION ; GROWTH ; INVASION ; proliferation ; HEPATOCELLULAR-CARCINOMA ; COLORECTAL-CANCER ; GASTRIC-CANCER ; PROMOTES ; MISSING-IN-METASTASIS ; MIM
    Abstract: Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3' untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor-inducible miRNAs mediate mechanisms underlying the progression of cancer.
    Type of Publication: Journal article published
    PubMed ID: 25783158
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: ANGIOGENESIS ; EXPRESSION ; GROWTH-FACTOR ; INVASION ; proliferation ; ACTIVATION ; UP-REGULATION ; EMBRYONIC STEM-CELLS ; bone metastasis ; MicroRNAs
    Abstract: MicroRNAs (miRNAs) as modulators of gene expression have been described to display both tumor-promoting and tumor-suppressive functions. Although their role has been studied in different tumor types, little is known about how they regulate nuclear factor kappaB (NF-kappaB) signaling in breast cancer. Here, we performed an unbiased whole genome miRNA (miRome) screen to identify novel modulators of NF-kappaB pathway in breast cancer. The screen identified 13 miRNA families whose members induced consistent effects on NF-kappaB activity. Among those, the miR-520/373 family inhibited NF-kappaB signaling through direct targeting of RELA and thus strongly reduced expression and secretion of the pro-inflammatory cytokines interleukin (IL)-6 and IL-8. With a combination of in vitro and in vivo approaches, we propose a metastasis-suppressive role of miR-520/373 family. miR-520c and miR-373 abrogated both in vitro cell invasion and in vivo intravasation of highly invasive MDA-MB-231 cells. However, knockdown of RELA did not affect their metastatic ability. mRNA profiling of MDA-MB-231 cells on overexpression of miR-520/373 members revealed a strong downregulation of transforming growth factor-beta (TGF-beta) signaling. Mechanistically, the metastasis-suppressive role of miR-520/373 can be attributed to direct suppression of TGFBR2, as the silencing of TGFBR2 phenocopied the effects of miR-520/373 overexpression on suppression of Smad-dependent expression of the metastasis-promoting genes parathyroid hormone-related protein, plasminogen activator inhibitor-1 and angiopoietin-like 4 as well as tumor cell invasion, in vitro and in vivo. A negative correlation between miR-520c and TGFBR2 expression was observed in estrogen receptor negative (ER(-)) breast cancer patients but not in the ER positive (ER(+)) subtype. Remarkably, decreased expression of miR-520c correlated with lymph node metastasis specifically in ER(-) tumors. Taken together, our findings reveal that miR-520/373 family has a tumor-suppressive role in ER(-) breast cancer by acting as a link between the NF-kappaB and TGF-beta pathways and may thus contribute to the interplay of tumor progression, metastasis and inflammation.Oncogene advance online publication, 12 December 2011; doi:10.1038/onc.2011.571.
    Type of Publication: Journal article published
    PubMed ID: 22158050
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0630
    Keywords: 79.20.DS ; 81.90. + c ; 78.90. + t
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Interaction phenomena of 50 ns copper vapour laser pulses (λ = 511/578 nm) with matter are investigated. The basic ablation process is classified into four fundamental classes. On basis of this classification processing results are connected with specific material properties like the brittleness, the viscosity of the melt or the optical properties. Knowing these properties a prognosis of the expected fundamental process is possible. In order to generate a geometrically defined structure via ablation in a given material-specific process, strategies have to be developed. Typical examples for process strategies are given.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...