Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0606
    Keywords: Complexity ; Estimates by integrals ; Analytic centers ; Path-following method ; Interior-point method ; Linear programs ; 90C60 ; 90C05 ; 49M35 ; 68Q25
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In this paper we study a particular class of primal-dual path-following methods which try to follow a trajectory of interior feasible solutions in primal-dual space toward an optimal solution to the primal and dual problem. The methods investigated are so-called first-order methods: each iteration consists of a “long” step along the tangent of the trajectory, followed by explicit recentering steps to get close to the trajectory again. It is shown that the complexity of these methods, which can be measured by the number of points close to the trajectory which have to be computed in order to achieve a desired gain in accuracy, is bounded by an integral along the trajectory. The integrand is a suitably weighted measure of the second derivative of the trajectory with respect to a distinguished path parameter, so the integral may be loosely called a curvature integral.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...