Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: BLOOD ; Germany ; LUNG ; PERFUSION ; imaging ; QUANTIFICATION ; VOLUME ; TIME ; BLOOD-FLOW ; blood flow ; FLOW ; HIGH-RESOLUTION MEASUREMENT ; MRI ; TRACER BOLUS PASSAGES ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; PARAMETERS ; SCINTIGRAPHY ; CONTRAST-ENHANCED MRI ; magnetic resonance imaging (MRI) ; QUANTITATIVE-ANALYSIS ; HEALTHY ; LUNG PERFUSION ; TRANSIT-TIME ; HEALTHY-VOLUNTEERS ; ARTERIAL ; INFLATION ; contrast-enhanced
    Abstract: Rationale and Objectives: The effect of breathholding on pulmonary perfusion remains largely unknown. The aim of this study was to assess the effect of inspiratory and expiratory breathhold on pulmonary perfusion using quantitative pulmonary perfusion magnetic resonance imaging (MRI). Methods and Results: Nine healthy volunteers (median age, 28 years; range, 20-45 years) were examined with contrast-enhanced time-resolved 3-dimensional pulmonary perfusion MRI (FLASH 313, TR/TE: 1.9/0.8 ms; flip angle: 40degrees; GRAPPA) during end-inspiratory and expiratory breathholds. The perfusion parameters pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit time (MTT) were calculated using the indicator dilution theory. As a reference method, end-inspiratory and expiratory phase-contrast (PC) MRI of the pulmonary arterial blood flow (PABF) was performed. Results: There was a statistically significant increase of the PBF (Delta = 182 mL/100mL/min), PBV (Delta = 12 mL/100 mL), and PABF (Delta = 0.5 L/min) between inspiratory and expiratory breathhold measurements (P 〈 0.0001). Also, the MTT was significantly shorter (Delta = -0.5 sec) at expiratory breathhold (P = 0.03). Inspiratory PBF and PBV showed a moderate correlation (r = 0.72 and 0.61, P less than or equal to0.008) with inspiratory PABF. Conclusion: Pulmonary perfusion during breathhold depends on the inspiratory level. Higher perfusion is observed at expiratory breathhold
    Type of Publication: Journal article published
    PubMed ID: 15654250
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Germany ; LUNG ; imaging ; SYSTEM ; SYSTEMS ; VOLUME ; SAMPLE ; COMPONENTS ; ACCURACY ; MR ; magnetic resonance ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; DIFFERENCE ; AGE ; COMPONENT ; PARAMETERS ; COMPUTED-TOMOGRAPHY ; BODY ; MR imaging ; dynamic magnetic resonance imaging ; BODIES ; CAPACITY ; OBSTRUCTION ; PULMONARY-FUNCTION TESTS ; development ; DIAPHRAGM ; HEALTHY-SUBJECTS ; CYSTIC-FIBROSIS ; SPIROMETRY ; INTERVAL ; analysis ; function ; LUNG-VOLUME ; female ; Male ; AGREEMENT ; RESONANCE ; body posture ; lung function tests ; magnetic resonance-compatible-spirometry ; nonsmokers ; pulmonary mechanics
    Abstract: The aim of this study was to assess the feasibility and accuracy of a novel magnetic resonance-compatible (MRc)-spirometer. The influence of body posture, magnetic resonance (MR)-setting and image acquisition on lung function was evaluated. Dynamic MR imaging (dMRI) was compared with simultaneously measured lung function. The development of the MRc-spirometer was based on a commercial spirometer and evaluated by flow-generator measurements and forced expiratory manoeuvres in 34 healthy nonsmokers (17 females and 17 males, mean age 32.9 yrs). Mean differences between forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were calculated and a sample paired t-test and Bland-Altman plots were generated. A total of I I subjects underwent different subsequent MRc-spirometric measurements to assess the influence of the components of the MR system on lung function. The mean (95% confidence interval) difference of FEV1 and FVC between the two systems was 0.004 (-0.04-0.04) L and 0.018 (-0.05-0.09) L, respectively. In the subgroup analysis, an influence of the MR-system on FEV1 was found. FEV1 correlated well with the dMRI measurement of the apico-diaphragmatic distance-change after the first second of forced expiration (r=0.72). In conclusion, magnetic resonance-compatible-spirometry is feasible, reliable and safe. The magnetic resonance-setting only has a small influence on simultaneously measured forced expiratory volume in one second. Dynamic magnetic resonance imaging measurements correlate well with simultaneously acquired lung function parameters
    Type of Publication: Journal article published
    PubMed ID: 17715166
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: LUNG ; PERFUSION ; imaging ; SYSTEM ; SYSTEMS ; VENTILATION ; NUCLEAR-MEDICINE ; TIME ; AIR ; MRI ; SIGNAL ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; DIFFERENCE ; NUMBER ; AGE ; WOMEN ; MEN ; DELIVERY ; motion correction ; nuclear medicine ; OXYGEN ; PULMONARY BLOOD-FLOW ; FEASIBILITY ; radiology ; methods ; NUCLEAR ; technique ; USA ; THICKNESS ; DIFFUSING-CAPACITY ; MEDICINE ; VALUES ; SECONDS ; RESPIRATORY SYNCHRONIZATION
    Abstract: Objective: The clinical feasibility of oxygen-enhanced magnetic resonance imaging (MRI) of the lung may benefit from the use of a simple gas delivery method. In this study, the oxygen-induced T1 change of the lung obtained using a closed O-2 delivery system was compared with that obtained by a conventional nontight face mask. Material and Methods: Twenty-three healthy subjects (15 men, 8 women, mean age = 25 years, age range = 20-35 years) underwent oxygen-enhanced MRI of the lung using a closed 02 delivery system composed by a tightly fitting face mask and a 60-L reservoir bag (equipment type A: n = 13, 9 men, 4 women, mean age = 24.4 years, age range = 20-32 years), or a clinically available nontight face mask (equipment type B: n = 10; 6 men, 4 women, mean age = 25.8 years, age range = 20-35 years). The effect of 100%-oxygen inhalation was assessed using a Snapshot FLASH T1-mapping technique (repetition time/echo time 1.5-1.6/0.56 milliseconds; matrix 128 X 90; acquisition time 3.3-3.7 seconds; slice thickness 15-20 mm; number of images = 40). By nonlinear curve fitting, the mean T1 values of the left and right lung at room air and 100%-oxygen ventilation were calculated (T1(room air, right); T1(oxygen, right); T1(room air, left); T1(oxygen, left)). The average T1 differences (Delta T1 = T1(room air) - T1(oxygen)) of the 2 volunteer groups were compared (Wilcoxon signed rank test, Mann-Whimey U test). Results: The mean T1 values obtained using the 2 respiratory equipments at room air or oxygen ventilation were not significantly different (A vs. B at room air ventilation: P = 0.85 for the right lung, P = 0.27 for the left lung; A vs. B at oxygen ventilation: P = 0.55 for the left lung, P = 0.29 for the right lung). With both systems, the mean T1 values decreased significantly after oxygen inhalation (P = 0.03-0.0002). For both lungs, the AT I obtained using the equipment type A was statistically equivalent to that obtained using the equipment type B: Delta T1(A), (right) = 96 +/- 19 milliseconds versus Delta T1(B), (right) = 97 +/- 34 milliseconds (P = 0.82); Delta T1(A), (left) = 74 +/- 47 milliseconds versus Delta T1(B), (left) = 68 +/- 63 milliseconds (P = 0.85). Conclusion: Gas delivery in oxygen-enhanced MRI of the lung can be performed with a clinically available standard face mask, without the need for closed sophisticated equipments
    Type of Publication: Journal article published
    PubMed ID: 18496048
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Germany ; LUNG ; PERFUSION ; THERAPY ; CT ; imaging ; PATIENT ; MRI ; SEQUENCE ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; STATISTICAL-ANALYSIS ; MORPHOLOGY ; PULMONARY PERFUSION ; BODY ; CHILDREN ; SEGMENTS ; FEASIBILITY ; BREATH-HOLD ; LUNG PERFUSION ; fibrosis ; WEIGHT ; IMPAIRMENT ; CYSTIC-FIBROSIS ; cystic fibrosis ; SMALL AIRWAYS ; DEFECT ; GRAPPA ; CIRCULATION ; lung morphology
    Abstract: This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/alpha/ST: 600 ms/28 ms/180 degrees/6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/alpha: 0.8/1.9 ms/40 degrees), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3-5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P 〈 0.0001). Severe morphological changes led to perfusion defects (97%, P 〈 0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients
    Type of Publication: Journal article published
    PubMed ID: 16673092
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: BLOOD ; Germany ; LUNG ; SPIRAL CT ; VOLUME ; DISEASE ; POPULATION ; HEART ; TIME ; PATIENT ; BLOOD-FLOW ; blood flow ; FLOW ; MRI ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; arteries ; PARAMETERS ; HYPERTENSION ; HEALTHY ; PULMONARY ; VELOCITY ; fibrosis ; PH ; HEALTHY-VOLUNTEERS ; CHRONIC THROMBOEMBOLISM ; CYSTIC-FIBROSIS ; ARTERIAL ; PULMONARY-ARTERIES ; early development ; bronchosystemic shunt ; cystic fibrosis
    Abstract: Cystic fibrosis (CF) leads to disabling lung disease and pulmonary hypertension (PH). The goal of this study was to assess the hemodynamics in the systemic and pulmonary arterial circulation of patients with CF using MRI. Ten patients with CF and 15 healthy volunteers were examined (1.5-T MRI). Phase-contrast flow measurements were assessed in the ascending aorta, pulmonary trunc, and the left and right pulmonary arteries (PA), resulting in the following parameters: peak velocity (PV) (centimeters per second) velocity rise gradient (VRG), time to PV (milliseconds), and the average area (centimeters squared). The blood flow ratio between the right and left lungs and the bronchosystemic shunt were calculated. For the ascending aorta and pulmonary trunc no parameter was significantly different between both populations. In the right PA a significantly lower PV (p=0.001) and VRG (p=0.02) was found. In the left PA there was a significantly (p=0.007) lower PV but no significant (p=0.07) difference between the VRG. The areas of the right (p=0.08) and left (p=0.5) PA were not significantly enlarged. For the volunteers a linear increase of PV in both PA was found with age, while it decreased in patients with CF. The blood flow distribution (right/left lung) showed no significant (p=0.7) difference between the groups. There was a significantly (p 〈 0.001) higher bronchosystemic shunt volume in patients with CF (1.3 l/min) than in volunteers (0.1 l/min). Magnetic resonance based flow measurements in the right and left PA showed first indications for early development of PH. The significant increase in bronchosystemic shunt volume might be indicative fo the extent of parenchymal changes
    Type of Publication: Journal article published
    PubMed ID: 15761712
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: evaluation ; Germany ; LUNG ; chest ; CT ; FOLLOW-UP ; imaging ; DISEASE ; EXPOSURE ; computed tomography ; NUCLEAR-MEDICINE ; radiation ; PATIENT ; MRI ; magnetic resonance ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; DAMAGE ; tomography ; COMPUTED-TOMOGRAPHY ; CHILDREN ; nuclear medicine ; COMPLICATIONS ; LUNG PERFUSION ; radiology ; ADULTS ; LIFE ; CHEST-X-RAY ; CYSTIC-FIBROSIS ; RADIATION-EXPOSURE ; methods ; NUCLEAR ; USA ; correlation ; cystic fibrosis ; female ; Male ; MEDICINE ; multidetector computed tomography ; - ; comparison ; RESONANCE ; MDCT ; chest x-ray ; cystic fibrosis (CF) ; morphologic MRI ; RADIOGRAPH ; SCORING SYSTEMS
    Abstract: Objectives: As pulmonary complications are life limiting in patients with cystic fibrosis (CF), repeated chest imaging [chest x-ray, computed tomography (CT)] is needed for follow up. With the continuously rising life expectancy of CF patients, magnetic resonance imaging (MRI) as a radiation-free imaging modality might become more and more attractive. The goal of this study was to prospectively assess the value of MRI for evaluation of morphologic pulmonary CF-changes in comparison to established imaging modalities. Materials and Methods: Thirty-one CF patients (19 female, 12 male; mean age 16.7 years) with stable lung disease were examined by MRI: HASTE, coronal/transversal (TR/TE/alpha/TA: infinite/28 ms/180 degrees/18 s), multi-detector computed tomography (MDCT) (30 patients): 120 kV, dose modulated mAs, and chest x-ray (21 patients). Image evaluation: random order, 4 chest radiologists in consensus; chest x-ray: modified Chrispin-Norman score; CT and MRI: modified Helbich score. The maximal attainable score for chest x-ray was 34, for MRI and CT 25. Median scores, Pearson correlation coefficients, Bland-Altman plots, and concordance of MRI to CT on a lobar and segmental basis were calculated. Results: The median MRI and MDCT scores were 13 (min 3, max 20) respectively 13.5 (min 0, max 20). The median chest x-ray score was 14 (min 5, max 32). Pearson correlation coefficients: MRI/CT = 0.80, P 〈 0.0001; MRI/chest x-ray = 0.63, P 〈 0.0018; chest x-ray/CT = 0.75, P 〈 0.0001. The median lobe related concordance was 80% for bronchiectasis, 77% for mucus plugging, 93%, for sacculation/abscesses, and 100% for collapse/consolidation. Conclusions: Morphologic MRI of the lung in CF patients demonstrates comparable results to MDCT and chest x-ray. Because radiation exposure is an issue in CF patients, MRI might have the ability to be used as an appropriate alternative method for pulmonary imaging
    Type of Publication: Journal article published
    PubMed ID: 17984769
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...