Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ADHESION, ALLOGRAFTS, ALPHA(V)BETA(3), ALPHA(V)BETA(3) INTEGRIN, ALPHA-V-INTEGRINS, ANTAGONIST, ARRE  (1)
  • AKT/PKB  (1)
Keywords
  • 1
    Keywords: CELLS ; GROWTH ; tumor ; PATHWAYS ; PANCREATIC-CANCER ; EGFR ; antiangiogenic therapy ; MYCOPHENOLIC-ACID ; MAMMALIAN PROTEIN ; AKT/PKB
    Abstract: The mTOR signaling plays an integral role in cellular homeostasis controlling the transition between the catabolic and anabolic states. Originally approved as immunosuppressive agents preventing allograft rejection, inhibitors of mTOR signaling have recently entered the arena of cancer therapy. Using rapamycin derivative (RAD001) as a prototype inhibitor, we aimed to systematically analyze the molecular mechanisms underlying the pleiotropic effects of mTOR signaling. Using proliferation- and clonogenic survival assays, a preferential sensitivity of microvascular endothelial cells (HDMVEC) followed by fibroblasts and U87 gliblastoma to RAD001 treatment was found. In contrast, lung- and prostate tumor cells demonstrated relative resistance against RAD001 treatment. In co-culture with fibroblasts, RAD001 exerted potent antiangiogenic effects by inhibiting endothelial cell tube formation. Further, RAD001 treatment efficiently prevented tumor growth in U87 tumor xenografts. Integrative transcriptome analysis was performed to decipher the molecular mechanism underlying RAD001 -induced anti-tumor and antiangiogenic effects. The predominant expression pattern was downregulation of genes after RAD001 treatment in all three sensitive cell types. Among the RAD001 downregulated genes, a transcriptional network was discovered enriched for genes related to angiogenesis processes and extracellular matrix remodeling, e. g., VEGF, HIF1A, CXCLs, IL6, FN, PAI-1 or NRP1. Of note, key components of PI3K upstream (PDK1) as well as mTORC2 downstream signaling (SGK1, NDRG) were downregulated by RAD001. Decreased expression of IMPDH and 139 common gene targets between mycophenolic acid and RAD001 suggested in part shared mechanisms underlying their antiangiogenic and immunosuppressive effects. In summary, key genetic participants governing anti-tumor and anti-angiogenic effects of mTOR inhibition were identified.
    Type of Publication: Journal article published
    PubMed ID: 23530502
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: ADHESION, ALLOGRAFTS, ALPHA(V)BETA(3), ALPHA(V)BETA(3) INTEGRIN, ALPHA-V-INTEGRINS, ANTAGONIST, ARRE
    Abstract: Integrin-mediated cell adhesion and signaling is essential to vascular development and inflammatory processes. Elevated expression of integrin alpha(v)beta(3) has been detected in ischemia-reperfusion injury and rejecting heart allografts. We thus hypothesized that the inhibition of alpha(v)-associated integrins may have potent anti-inflammatory effects in acute kidney allograft rejection. We studied the effects of a peptidomimetic antagonist of alpha(v) integrins in two rat models of renal allotransplantation, differing in degree of major histocompatibility complex mismatch. Integrin alpha(v)beta(3) was up-regulated in rejecting renal allografts. Integrin antagonist reduced the histological signs of acute rejection, the intensity of the mononuclear cell infiltration, and cell proliferation in the grafted kidneys. This could be correlated to a reduced leukocyte-endothelial interaction and an improved peritubular microcirculation observed by intravital microscopy. In vitro under laminar flow conditions, the arrest of monocytes to interleukin-1 beta-activated endothelium was decreased. Furthermore, in co-culture models the proliferation and transmigration of monocytes/macrophages, endothelium, and fibroblasts induced by renal tubular epithelia was efficiently inhibited by alpha(v) integrin antagonism. These data reveal an important role of this integrin subclass in leukocyte recruitment and development and maintenance of acute rejection; blockade of alpha(v) integrins may provide a new therapeutic strategy to attenuate acute allograft rejection
    Type of Publication: Journal article published
    PubMed ID: 17702892
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...