Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  HEC 2016: Health - Exploring Complexity; Joint Conference of GMDS, DGEpi, IEA-EEF, EFMI; 20160828-20160902; München; DOCAbstr. 644 /20160808/
    Publication Date: 2016-08-11
    Keywords: Implementation, training and evaluation ; ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  GMS Medizinische Informatik, Biometrie und Epidemiologie; VOL: 15; DOC05 /20190709/
    Publication Date: 2019-07-10
    Description: Data quality is of highest importance for quantitative medical research. A common set of indicators for data quality is needed to cope with the future challenges in data management for biomedical informatics. A guideline for adaptive data management was developed in 2006, which offers indicators for data quality organized in three categories: integrity, organization, and trueness. The guideline was revised in 2014 bottom-up by extending its content with standards from a cancer registry, a cohort, and a data repository in Germany. In parallel, a systematic literature review identified indicators of data quality published in the literature since 2005 using Medline as literature database. The guideline differentiates in its second version 51 indicators (integrity: 30, organization: 15, trueness: 6). The literature review identified 34 indicators in 31 articles. A lack of indicators in the literature addressing the organizational aspects of data sets became visible comparing both sets. Furthermore, indicators useful for data sets used in health care practice, such as timeliness, were missing in the guideline's set. The comparison is a first step towards a common set of indicators. Beyond a consented denomination of the indicators, this set should offer an operational definition that supports a reliable application from different parties to different data sets. Furthermore, a systematic organization of the indicators would foster an appropriate selection of the individual indicators according to specific use cases.
    Description: Datenqualität ist für die quantitative medizinische Forschung von höchster Bedeutung. Ein einheitliches Set von Indikatoren zur Datenqualität wird benötigt, um die zukünftigen Herausforderungen an das Datenmanagement in der biomedizinischen Informatik zu bewältigen. Dazu wurde eine Leitlinie zum adaptiven Datenmanagement im Jahre 2006 erarbeitet, die Indikatoren zur Datenqualität über drei Ebenen organisiert: die Ebenen Integrität, Organisation und Richtigkeit. Inhaltlich wurde die Leitlinie im Jahre 2014 Bottom-up durch die Einbindung von Standards eines Krebsregisters, einer Kohorte und eines Data Repository aus Deutschland erweitert. Parallel wurden über ein systematisches Literaturreview publizierte Indikatoren der Datenqualität mit Medline als Literaturdatenbank recherchiert. Die Leitlinie weist in ihrer zweiten Version 51 Indikatoren aus (Integrität: 30, Organisation: 15, Richtigkeit: 6). Das Literaturreview identifizierte 34 Indikatoren in 31 Publikationen. Im Vergleich beider Quellen war das Fehlen von Indikatoren zu organisatorischen Aspekten in der Literatur auffällig. Der Leitlinie fehlten hingegen Indikatoren mit Bedeutung für die Krankenversorgung wie Rechtzeitigkeit. Der vorgenommene Vergleich stellt einen weiteren Schritt zur Festlegung einem einheitlichen Sets von Indikatoren zur Datenqualität in der medizinischen Forschung dar. Neben einheitlichen Bezeichnungen sollte ein solches Set umsetzbare Definitionen beinhalten, die eine zuverlässige Anwendung auf unterschiedlichen Datenbeständen durch unterschiedliche Forschergruppen sicherstellt. Zusätzlich würde eine systematische Organisation der Indikatoren eine angemessene Auswahl von Indikatoren für unterschiedliche Anwendungsszenarien unterstützen.
    Keywords: medical research ; data quality ; healthcare ; guidelines ; analytics ; informatics ; medizinische Forschung ; Datenqualität ; Gesundheitswesen ; Leitlinie ; Analyse ; Informatik ; ddc: 610
    Language: English
    Type: article
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...