Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-19
    Description: Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Rourke, J G -- Bogdanik, L -- Yanez, A -- Lall, D -- Wolf, A J -- Muhammad, A K M G -- Ho, R -- Carmona, S -- Vit, J P -- Zarrow, J -- Kim, K J -- Bell, S -- Harms, M B -- Miller, T M -- Dangler, C A -- Underhill, D M -- Goodridge, H S -- Lutz, C M -- Baloh, R H -- GM085796/GM/NIGMS NIH HHS/ -- NS069669/NS/NINDS NIH HHS/ -- NS078398/NS/NINDS NIH HHS/ -- NS087351/NS/NINDS NIH HHS/ -- UL1TR000124/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1324-9. doi: 10.1126/science.aaf1064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. ; The Jackson Laboratory, Bar Harbor, ME, USA. ; Division of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. ; Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. ; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989253" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Amyotrophic Lateral Sclerosis/genetics/*immunology ; Animals ; Frontotemporal Dementia/genetics/*immunology ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/genetics/*physiology ; Heterozygote ; Humans ; Lymphatic Diseases/genetics/immunology ; Macrophages/*immunology ; Mice ; Mice, Knockout ; Microglia/*immunology ; Myeloid Cells/*immunology ; Proteins/genetics/*physiology ; Rats ; Splenomegaly/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-07
    Description: In the adult central nervous system, the vasculature of the neurogenic niche regulates neural stem cell behavior by providing circulating and secreted factors. Age-related decline of neurogenesis and cognitive function is associated with reduced blood flow and decreased numbers of neural stem cells. Therefore, restoring the functionality of the niche should counteract some of the negative effects of aging. We show that factors found in young blood induce vascular remodeling, culminating in increased neurogenesis and improved olfactory discrimination in aging mice. Further, we show that GDF11 alone can improve the cerebral vasculature and enhance neurogenesis. The identification of factors that slow the age-dependent deterioration of the neurogenic niche in mice may constitute the basis for new methods of treating age-related neurodegenerative and neurovascular diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katsimpardi, Lida -- Litterman, Nadia K -- Schein, Pamela A -- Miller, Christine M -- Loffredo, Francesco S -- Wojtkiewicz, Gregory R -- Chen, John W -- Lee, Richard T -- Wagers, Amy J -- Rubin, Lee L -- 1DP2 OD004345/OD/NIH HHS/ -- 1R01 AG033053/AG/NIA NIH HHS/ -- 1R01 AG040019/AG/NIA NIH HHS/ -- 5U01 HL100402/HL/NHLBI NIH HHS/ -- DP2 OD004345/OD/NIH HHS/ -- R01 AG032977/AG/NIA NIH HHS/ -- R01 AG033053/AG/NIA NIH HHS/ -- R01 AG040019/AG/NIA NIH HHS/ -- R01 NS070835/NS/NINDS NIH HHS/ -- R01 NS072167/NS/NINDS NIH HHS/ -- R01NS070835/NS/NINDS NIH HHS/ -- R01NS072167/NS/NINDS NIH HHS/ -- U01 HL100402/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):630-4. doi: 10.1126/science.1251141. Epub 2014 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24797482" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*drug effects ; Animals ; Bone Morphogenetic Proteins/*administration & dosage/blood/physiology ; Brain/blood supply/*drug effects ; Cerebrovascular Circulation/*drug effects ; Cognition/drug effects ; Endothelium, Vascular/cytology/drug effects ; Growth Differentiation Factors/*administration & dosage/blood/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Stem Cells/cytology/*drug effects ; Neurogenesis/*drug effects ; Olfactory Bulb/cytology/drug effects ; Parabiosis ; Recombinant Proteins/administration & dosage ; *Rejuvenation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-15
    Description: Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Kristina M -- Li, Shaorong -- Kaukinen, Karia H -- Ginther, Norma -- Hammill, Edd -- Curtis, Janelle M R -- Patterson, David A -- Sierocinski, Thomas -- Donnison, Louise -- Pavlidis, Paul -- Hinch, Scott G -- Hruska, Kimberly A -- Cooke, Steven J -- English, Karl K -- Farrell, Anthony P -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):214-7. doi: 10.1126/science.1196901.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Section, Pacific Biological Station, 3190 Hammond Bay Road, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada. kristi.miller@dfo-mpo.gc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233388" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Canada ; Female ; Fish Diseases/genetics/immunology/mortality ; *Gene Expression ; *Gene Expression Profiling ; Genome ; Gills ; Male ; Mortality ; Oligonucleotide Array Sequence Analysis ; Pacific Ocean ; Population Dynamics ; Principal Component Analysis ; Remote Sensing Technology ; *Reproduction ; Rivers ; Salmon/*genetics/*physiology ; Stress, Physiological ; Survival Analysis ; Virus Diseases/genetics/immunology/mortality/veterinary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...