Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (28)
  • Nature Publishing Group (NPG)  (28)
  • Springer
  • Blackwell Science Pty
  • Macmillian Magazines Ltd.
Collection
Publisher
Years
  • 1
    Publication Date: 2013-11-12
    Description: In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yubo -- Wong, Chee-Hong -- Birnbaum, Ramon Y -- Li, Guoliang -- Favaro, Rebecca -- Ngan, Chew Yee -- Lim, Joanne -- Tai, Eunice -- Poh, Huay Mei -- Wong, Eleanor -- Mulawadi, Fabianus Hendriyan -- Sung, Wing-Kin -- Nicolis, Silvia -- Ahituv, Nadav -- Ruan, Yijun -- Wei, Chia-Lin -- 1U54HG004557-01/HG/NHGRI NIH HHS/ -- GGP12152/Telethon/Italy -- GM61390/GM/NIGMS NIH HHS/ -- R01 DK090382/DK/NIDDK NIH HHS/ -- R01 HD059862/HD/NICHD NIH HHS/ -- R01 HG004456-01/HG/NHGRI NIH HHS/ -- R01 NS079231/NS/NINDS NIH HHS/ -- R01DK090382/DK/NIDDK NIH HHS/ -- R01HD059862/HD/NICHD NIH HHS/ -- R01HG003521-01/HG/NHGRI NIH HHS/ -- R01HG005058/HG/NHGRI NIH HHS/ -- R01HG006768/HG/NHGRI NIH HHS/ -- R01NS079231/NS/NINDS NIH HHS/ -- U01 GM061390/GM/NIGMS NIH HHS/ -- U19 GM061390/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Dec 12;504(7479):306-10. doi: 10.1038/nature12716. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2] [3] Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.Y.B.); National Heart, Lung, and Blood Institute, National Institutes of Health, Systems Biology Center, 9000 Rockville Pike, Bethesda, Maryland 20892, USA (Y.Z.). ; 1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2]. ; 1] Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA [2] [3] Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.Y.B.); National Heart, Lung, and Blood Institute, National Institutes of Health, Systems Biology Center, 9000 Rockville Pike, Bethesda, Maryland 20892, USA (Y.Z.). ; 1] The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA [2] Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore. ; Department of Biological Sciences and Biotechnology, University of Milano-Bicocca, 20126 Milano, Italy. ; Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA. ; Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore. ; Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA. ; The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA. ; 1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2] Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213634" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Lineage ; Chromatin/*genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation/*genetics ; In Situ Hybridization, Fluorescence ; Mice ; Neural Stem Cells/metabolism ; Promoter Regions, Genetic/*genetics ; RNA Polymerase II/metabolism ; Transcription, Genetic/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-20
    Description: Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhao -- Cheng, Katherine -- Walton, Zandra -- Wang, Yuchuan -- Ebi, Hiromichi -- Shimamura, Takeshi -- Liu, Yan -- Tupper, Tanya -- Ouyang, Jing -- Li, Jie -- Gao, Peng -- Woo, Michele S -- Xu, Chunxiao -- Yanagita, Masahiko -- Altabef, Abigail -- Wang, Shumei -- Lee, Charles -- Nakada, Yuji -- Pena, Christopher G -- Sun, Yanping -- Franchetti, Yoko -- Yao, Catherine -- Saur, Amy -- Cameron, Michael D -- Nishino, Mizuki -- Hayes, D Neil -- Wilkerson, Matthew D -- Roberts, Patrick J -- Lee, Carrie B -- Bardeesy, Nabeel -- Butaney, Mohit -- Chirieac, Lucian R -- Costa, Daniel B -- Jackman, David -- Sharpless, Norman E -- Castrillon, Diego H -- Demetri, George D -- Janne, Pasi A -- Pandolfi, Pier Paolo -- Cantley, Lewis C -- Kung, Andrew L -- Engelman, Jeffrey A -- Wong, Kwok-Kin -- 1U01CA141576/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA137008/CA/NCI NIH HHS/ -- CA137008-01/CA/NCI NIH HHS/ -- CA137181/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA147940/CA/NCI NIH HHS/ -- K23 CA157631/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA090578-06/CA/NCI NIH HHS/ -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-01/CA/NCI NIH HHS/ -- R01 CA137008/CA/NCI NIH HHS/ -- R01 CA137008-01/CA/NCI NIH HHS/ -- R01 CA137181/CA/NCI NIH HHS/ -- R01 CA137181-01A2/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA140594-01/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- RC2 CA147940/CA/NCI NIH HHS/ -- RC2 CA147940-01/CA/NCI NIH HHS/ -- U01 CA141576/CA/NCI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22425996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Combined Chemotherapy Protocols ; Benzimidazoles/*pharmacology/therapeutic use ; Biomarkers, Tumor/genetics/metabolism ; *Clinical Trials, Phase II as Topic ; *Disease Models, Animal ; Drug Evaluation, Preclinical ; Fluorodeoxyglucose F18 ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/metabolism ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Mutation/genetics ; Pharmacogenetics/*methods ; Positron-Emission Tomography ; Protein-Serine-Threonine Kinases/deficiency/genetics ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Randomized Controlled Trials as Topic ; Reproducibility of Results ; Taxoids/*therapeutic use ; Tomography, X-Ray Computed ; Treatment Outcome ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-01
    Description: Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Margarida A -- Faryabi, Robert B -- Ergen, Aysegul V -- Day, Amanda M -- Malhowski, Amy -- Canela, Andres -- Onozawa, Masahiro -- Lee, Ji-Eun -- Callen, Elsa -- Gutierrez-Martinez, Paula -- Chen, Hua-Tang -- Wong, Nancy -- Finkel, Nadia -- Deshpande, Aniruddha -- Sharrow, Susan -- Rossi, Derrick J -- Ito, Keisuke -- Ge, Kai -- Aplan, Peter D -- Armstrong, Scott A -- Nussenzweig, Andre -- CA140575/CA/NCI NIH HHS/ -- CA66996/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):107-11. doi: 10.1038/nature13483. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; The Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; BRCA1 Protein/genetics/metabolism ; Cell Transformation, Neoplastic ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; Female ; Gene Expression Regulation, Neoplastic ; Genes, BRCA1 ; Hematopoietic Stem Cells/cytology/metabolism/pathology ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*enzymology/*pathology ; Male ; Mice ; *Myelopoiesis ; Oncogene Proteins, Fusion/genetics/metabolism ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-30
    Description: Non-small-cell lung cancer is the leading cause of cancer-related death worldwide. Chemotherapies such as the topoisomerase II (TopoII) inhibitor etoposide effectively reduce disease in a minority of patients with this cancer; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the polycomb repressive complex 2 (PRC2) is well known to tri-methylate histone H3 at lysine 27 (H3K27me3) and elicit gene silencing. Here we demonstrate that EZH2 inhibition has differential effects on the TopoII inhibitor response of non-small-cell lung cancers in vitro and in vivo. EGFR and BRG1 mutations are genetic biomarkers that predict enhanced sensitivity to TopoII inhibitor in response to EZH2 inhibition. BRG1 loss-of-function mutant tumours respond to EZH2 inhibition with increased S phase, anaphase bridging, apoptosis and TopoII inhibitor sensitivity. Conversely, EGFR and BRG1 wild-type tumours upregulate BRG1 in response to EZH2 inhibition and ultimately become more resistant to TopoII inhibitor. EGFR gain-of-function mutant tumours are also sensitive to dual EZH2 inhibition and TopoII inhibitor, because of genetic antagonism between EGFR and BRG1. These findings suggest an opportunity for precision medicine in the genetically complex disease of non-small-cell lung cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393352/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393352/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fillmore, Christine M -- Xu, Chunxiao -- Desai, Pooja T -- Berry, Joanne M -- Rowbotham, Samuel P -- Lin, Yi-Jang -- Zhang, Haikuo -- Marquez, Victor E -- Hammerman, Peter S -- Wong, Kwok-Kin -- Kim, Carla F -- CA120964/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA154303/CA/NCI NIH HHS/ -- CA163896/CA/NCI NIH HHS/ -- CA166480/CA/NCI NIH HHS/ -- K08 CA163677/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- R01 CA166480/CA/NCI NIH HHS/ -- R01 HL090136/HL/NHLBI NIH HHS/ -- U01 HL100402/HL/NHLBI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Apr 9;520(7546):239-42. doi: 10.1038/nature14122. Epub 2015 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25629630" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase/drug effects ; Animals ; Antineoplastic Agents, Phytogenic/pharmacology/therapeutic use ; Apoptosis/drug effects ; Carcinoma, Non-Small-Cell Lung/drug therapy/enzymology/genetics/pathology ; Cell Cycle/drug effects ; Cell Line, Tumor ; DNA Helicases/*genetics ; Etoposide/pharmacology/therapeutic use ; Genes, erbB-1/*genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/pathology ; Mice ; Molecular Targeted Therapy ; Nuclear Proteins/*genetics ; Polycomb Repressive Complex 2/*antagonists & inhibitors ; Topoisomerase II Inhibitors/*pharmacology/*therapeutic use ; Transcription Factors/*genetics ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-13
    Description: The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes in vivo. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662610/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662610/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Kari R -- Durrans, Anna -- Lee, Sharrell -- Sheng, Jianting -- Li, Fuhai -- Wong, Stephen T C -- Choi, Hyejin -- El Rayes, Tina -- Ryu, Seongho -- Troeger, Juliane -- Schwabe, Robert F -- Vahdat, Linda T -- Altorki, Nasser K -- Mittal, Vivek -- Gao, Dingcheng -- 1 F31 CA186510-01/CA/NCI NIH HHS/ -- F31 CA186510/CA/NCI NIH HHS/ -- R01 CA135417/CA/NCI NIH HHS/ -- U01 CA188388/CA/NCI NIH HHS/ -- U54 CA149196-05/CA/NCI NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):472-6. doi: 10.1038/nature15748. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiothoracic Surgery, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Neuberger Berman Lung Cancer Center, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030, USA. ; Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas, 77030 USA. ; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 25 Bongjeong-ro Cheonan-Si, Chungcheongnam-do 31151, South Korea. ; Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA. ; Institute of Human Nutrition, Columbia University, New York, New York 10032, USA. ; Department of Medicine, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents, Alkylating/pharmacology/therapeutic use ; Apoptosis/drug effects ; Cell Lineage ; Cell Proliferation/drug effects ; Cell Tracking ; Cyclophosphamide/pharmacology/therapeutic use ; Disease Models, Animal ; Disease Progression ; *Drug Resistance, Neoplasm/drug effects/genetics ; *Epithelial-Mesenchymal Transition/drug effects/genetics ; Female ; Lung Neoplasms/drug therapy/genetics/*pathology/*secondary ; Male ; Mammary Neoplasms, Experimental/*drug therapy/genetics/*pathology ; Mice ; MicroRNAs/genetics ; Neoplasm Metastasis/drug therapy/genetics/*pathology ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-09-23
    Description: Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (〈2.5 degrees ), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and transportation, optical sensing, medicine, and as self-cleaning and anti-fouling materials operating in extreme environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Tak-Sing -- Kang, Sung Hoon -- Tang, Sindy K Y -- Smythe, Elizabeth J -- Hatton, Benjamin D -- Grinthal, Alison -- Aizenberg, Joanna -- England -- Nature. 2011 Sep 21;477(7365):443-7. doi: 10.1038/nature10447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21938066" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/anatomy & histology/*chemistry ; Animals ; Ants/physiology ; Biomimetic Materials/*chemistry ; Blood ; Hydrocarbons/chemistry ; Ice ; Lotus/anatomy & histology/chemistry ; Lubricants/*chemistry/pharmacology ; Lubrication ; Nanostructures ; Petroleum ; Porosity ; *Pressure ; *Surface Properties/drug effects ; Water/chemistry ; *Wettability
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-04
    Description: Measles virus is an aerosol-transmitted virus that affects more than 10 million children each year and accounts for approximately 120,000 deaths. Although it was long believed to replicate in the respiratory epithelium before disseminating, it was recently shown to infect initially macrophages and dendritic cells of the airways using signalling lymphocytic activation molecule family member 1 (SLAMF1; also called CD150) as a receptor. These cells then cross the respiratory epithelium and transport the infection to lymphatic organs where measles virus replicates vigorously. How and where the virus crosses back into the airways has remained unknown. On the basis of functional analyses of surface proteins preferentially expressed on virus-permissive human epithelial cell lines, here we identify nectin-4 (ref. 8; also called poliovirus-receptor-like-4 (PVRL4)) as a candidate host exit receptor. This adherens junction protein of the immunoglobulin superfamily interacts with the viral attachment protein with high affinity through its membrane-distal domain. Nectin-4 sustains measles virus entry and non-cytopathic lateral spread in well-differentiated primary human airway epithelial sheets infected basolaterally. It is downregulated in infected epithelial cells, including those of macaque tracheae. Although other viruses use receptors to enter hosts or transit through their epithelial barriers, we suggest that measles virus targets nectin-4 to emerge in the airways. Nectin-4 is a cellular marker of several types of cancer, which has implications for ongoing measles-virus-based clinical trials of oncolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muhlebach, Michael D -- Mateo, Mathieu -- Sinn, Patrick L -- Prufer, Steffen -- Uhlig, Katharina M -- Leonard, Vincent H J -- Navaratnarajah, Chanakha K -- Frenzke, Marie -- Wong, Xiao X -- Sawatsky, Bevan -- Ramachandran, Shyam -- McCray, Paul B Jr -- Cichutek, Klaus -- von Messling, Veronika -- Lopez, Marc -- Cattaneo, Roberto -- MOP-66989/Canadian Institutes of Health Research/Canada -- P30 DK-54759/DK/NIDDK NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- R01 AI063476/AI/NIAID NIH HHS/ -- R01 AI063476-05A2/AI/NIAID NIH HHS/ -- R01 CA090636/CA/NCI NIH HHS/ -- R01 CA090636-09/CA/NCI NIH HHS/ -- England -- Nature. 2011 Nov 2;480(7378):530-3. doi: 10.1038/nature10639.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22048310" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Adhesion Molecules/genetics/*metabolism ; Cell Line ; Cricetinae ; Gene Expression Profiling ; Humans ; Measles/*metabolism ; Measles virus/*metabolism ; Receptors, Virus/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-01
    Description: Stroking of the skin produces pleasant sensations that can occur during social interactions with conspecifics, such as grooming. Despite numerous physiological studies (reviewed in ref. 2), molecularly defined sensory neurons that detect pleasant stroking of hairy skin in vivo have not been reported. Previously, we identified a rare population of unmyelinated sensory neurons in mice that express the G-protein-coupled receptor MRGPRB4 (refs 5, 6). These neurons exclusively innervate hairy skin with large terminal arborizations that resemble the receptive fields of C-tactile (CT) afferents in humans. Unlike other molecularly defined mechanosensory C-fibre subtypes, MRGPRB4(+) neurons could not be detectably activated by sensory stimulation of the skin ex vivo. Therefore, we developed a preparation for calcium imaging in the spinal projections of these neurons during stimulation of the periphery in intact mice. Here we show that MRGPRB4(+) neurons are activated by massage-like stroking of hairy skin, but not by noxious punctate mechanical stimulation. By contrast, a different population of C fibres expressing MRGPRD was activated by pinching but not by stroking, consistent with previous physiological and behavioural data. Pharmacogenetic activation of Mrgprb4-expressing neurons in freely behaving mice promoted conditioned place preference, indicating that such activation is positively reinforcing and/or anxiolytic. These data open the way to understanding the function of MRGPRB4 neurons during natural behaviours, and provide a general approach to the functional characterization of genetically identified subsets of somatosensory neurons in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vrontou, Sophia -- Wong, Allan M -- Rau, Kristofer K -- Koerber, H Richard -- Anderson, David J -- 5P01NS-48499/NS/NINDS NIH HHS/ -- 5R01 NS023476/NS/NINDS NIH HHS/ -- P01 NS048499/NS/NINDS NIH HHS/ -- R01 NS023725/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 31;493(7434):669-73. doi: 10.1038/nature11810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23364746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gene Expression Profiling ; Mice ; Nerve Fibers, Unmyelinated/*metabolism ; Receptors, G-Protein-Coupled/*genetics/metabolism ; Sensory Receptor Cells/metabolism ; Skin/*innervation ; Touch/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-30
    Description: Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viraemia and abnormalities in blood count and blood chemistry were evident in many animals before ZMapp intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal haemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp is cross-reactive with the Guinean variant of Ebola. ZMapp exceeds the efficacy of any other therapeutics described so far, and results warrant further development of this cocktail for clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Xiangguo -- Wong, Gary -- Audet, Jonathan -- Bello, Alexander -- Fernando, Lisa -- Alimonti, Judie B -- Fausther-Bovendo, Hugues -- Wei, Haiyan -- Aviles, Jenna -- Hiatt, Ernie -- Johnson, Ashley -- Morton, Josh -- Swope, Kelsi -- Bohorov, Ognian -- Bohorova, Natasha -- Goodman, Charles -- Kim, Do -- Pauly, Michael H -- Velasco, Jesus -- Pettitt, James -- Olinger, Gene G -- Whaley, Kevin -- Xu, Bianli -- Strong, James E -- Zeitlin, Larry -- Kobinger, Gary P -- U19 AI109762/AI/NIAID NIH HHS/ -- U19AI109762/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Oct 2;514(7520):47-53. doi: 10.1038/nature13777. Epub 2014 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Institute of Infectious Disease, Henan Centre for Disease Control and Prevention, Zhengzhou, 450012 Henan, China. ; Kentucky BioProcessing, Owensboro, Kentucky 42301, USA. ; Mapp Biopharmaceutical Inc., San Diego, California 92121, USA. ; 1] United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702, USA [2] Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland 21702, USA. ; Institute of Infectious Disease, Henan Centre for Disease Control and Prevention, Zhengzhou, 450012 Henan, China. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada [3] Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba R3A 1S1, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada [4] Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25171469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology/*therapeutic use ; Antibodies, Neutralizing/immunology/therapeutic use ; Antibodies, Viral/immunology/*therapeutic use ; Cross Reactions/immunology ; Ebolavirus/immunology ; Enzyme-Linked Immunosorbent Assay ; Female ; Guinea ; Guinea Pigs ; Hemorrhagic Fever, Ebola/blood/*drug therapy/immunology/virology ; *Immunization, Passive ; Macaca mulatta/immunology/virology ; Male ; Molecular Sequence Data ; Sequence Alignment ; Viral Envelope Proteins/chemistry/immunology ; Viremia/drug therapy/immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-22
    Description: Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert alpha-ketoglutarate (alphaKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple alphaKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4alpha, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4alpha silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499230/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499230/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saha, Supriya K -- Parachoniak, Christine A -- Ghanta, Krishna S -- Fitamant, Julien -- Ross, Kenneth N -- Najem, Mortada S -- Gurumurthy, Sushma -- Akbay, Esra A -- Sia, Daniela -- Cornella, Helena -- Miltiadous, Oriana -- Walesky, Chad -- Deshpande, Vikram -- Zhu, Andrew X -- Hezel, Aram F -- Yen, Katharine E -- Straley, Kimberly S -- Travins, Jeremy -- Popovici-Muller, Janeta -- Gliser, Camelia -- Ferrone, Cristina R -- Apte, Udayan -- Llovet, Josep M -- Wong, Kwok-Kin -- Ramaswamy, Sridhar -- Bardeesy, Nabeel -- P50 CA127003/CA/NCI NIH HHS/ -- P50CA1270003/CA/NCI NIH HHS/ -- R01 CA136567/CA/NCI NIH HHS/ -- R01 DK098414/DK/NIDDK NIH HHS/ -- R01CA136567-02/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Sep 4;513(7516):110-4. doi: 10.1038/nature13441. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA [2]. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Catalonia 08036, Spain [2] Mount Sinai Liver Cancer Program, Division of Liver Diseases, Dept of Medicine. Icahn School of Medicine at Mount Sinai, New York 10029, USA [3] Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, and Department of Experimental Oncology, Milan 20133, Italy. ; HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Catalonia 08036, Spain. ; Mount Sinai Liver Cancer Program, Division of Liver Diseases, Dept of Medicine. Icahn School of Medicine at Mount Sinai, New York 10029, USA. ; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA. ; University of Rochester Medical Center, Rochester, New York 14642, USA. ; Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA. ; 1] HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Catalonia 08036, Spain [2] Mount Sinai Liver Cancer Program, Division of Liver Diseases, Dept of Medicine. Icahn School of Medicine at Mount Sinai, New York 10029, USA [3] Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Catalonia 08010, Spain [4] University of Barcelona, Catalonia 08036, Spain. ; 1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Duct Neoplasms/enzymology/genetics/*pathology ; Bile Ducts, Intrahepatic/enzymology/pathology ; Cell Differentiation/*genetics ; Cell Division/genetics ; Cell Lineage/genetics ; Cholangiocarcinoma/enzymology/genetics/*pathology ; Disease Models, Animal ; Female ; Glutarates/metabolism ; Hepatocyte Nuclear Factor 4/*antagonists & ; inhibitors/biosynthesis/genetics/metabolism ; Hepatocytes/enzymology/metabolism/*pathology ; Humans ; Isocitrate Dehydrogenase/*genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Mutant Proteins/genetics/*metabolism ; Mutation/genetics ; Neoplasm Metastasis ; Proto-Oncogene Proteins/genetics/metabolism ; Stem Cells/pathology ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...