Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-16
    Description: Aboveground consumers are believed to affect ecosystem functioning by regulating the quantity and quality of plant litter entering the soil. We uncovered a pathway whereby terrestrial predators regulate ecosystem processes via indirect control over soil community function. Grasshopper herbivores stressed by spider predators have a higher body carbon-to-nitrogen ratio than do grasshoppers raised without spiders. This change in elemental content does not slow grasshopper decomposition but perturbs belowground community function, decelerating the subsequent decomposition of plant litter. This legacy effect of predation on soil community function appears to be regulated by the amount of herbivore protein entering the soil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawlena, Dror -- Strickland, Michael S -- Bradford, Mark A -- Schmitz, Oswald J -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1434-8. doi: 10.1126/science.1220097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT 06511, USA. dror.hawlena@mail.huji.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/metabolism ; Biomass ; Carbon/analysis/metabolism ; Ecosystem ; Energy Metabolism ; Fear ; *Food Chain ; Grasshoppers/chemistry/*physiology ; Herbivory/physiology ; Insect Proteins/analysis/metabolism ; Nitrogen/analysis/metabolism ; *Plants ; *Predatory Behavior ; Soil/chemistry ; *Soil Microbiology ; Spiders/*physiology ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-16
    Description: In central neurons, information flows from the dendritic surface toward the axon terminals. We found that during in vitro gamma oscillations, ectopic action potentials are generated at high frequency in the distal axon of pyramidal cells (PCs) but do not invade the soma. At the same time, axo-axonic cells (AACs) discharged at a high rate and tonically inhibited the axon initial segment, which can be instrumental in preventing ectopic action potential back-propagation. We found that activation of a single AAC substantially lowered soma invasion by antidromic action potential in postsynaptic PCs. In contrast, activation of soma-inhibiting basket cells had no significant impact. These results demonstrate that AACs can separate axonal from somatic activity and maintain the functional polarization of cortical PCs during network oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dugladze, Tamar -- Schmitz, Dietmar -- Whittington, Miles A -- Vida, Imre -- Gloveli, Tengis -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1458-61. doi: 10.1126/science.1222017.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurophysiology, Charite-Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700932" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Axons/*physiology ; CA3 Region, Hippocampal/cytology/*physiology ; Electric Stimulation ; GABA-A Receptor Antagonists/pharmacology ; In Vitro Techniques ; Interneurons/*physiology ; Mice ; Nerve Net/*physiology ; Neural Inhibition ; Patch-Clamp Techniques ; Presynaptic Terminals/physiology ; Pyramidal Cells/*physiology ; Pyridazines/pharmacology ; Receptors, GABA-A/metabolism ; Synapses/physiology ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-17
    Description: To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Richard E -- Braun, Edward L -- Armstrong, Joel -- Earl, Dent -- Nguyen, Ngan -- Hickey, Glenn -- Vandewege, Michael W -- St John, John A -- Capella-Gutierrez, Salvador -- Castoe, Todd A -- Kern, Colin -- Fujita, Matthew K -- Opazo, Juan C -- Jurka, Jerzy -- Kojima, Kenji K -- Caballero, Juan -- Hubley, Robert M -- Smit, Arian F -- Platt, Roy N -- Lavoie, Christine A -- Ramakodi, Meganathan P -- Finger, John W Jr -- Suh, Alexander -- Isberg, Sally R -- Miles, Lee -- Chong, Amanda Y -- Jaratlerdsiri, Weerachai -- Gongora, Jaime -- Moran, Christopher -- Iriarte, Andres -- McCormack, John -- Burgess, Shane C -- Edwards, Scott V -- Lyons, Eric -- Williams, Christina -- Breen, Matthew -- Howard, Jason T -- Gresham, Cathy R -- Peterson, Daniel G -- Schmitz, Jurgen -- Pollock, David D -- Haussler, David -- Triplett, Eric W -- Zhang, Guojie -- Irie, Naoki -- Jarvis, Erich D -- Brochu, Christopher A -- Schmidt, Carl J -- McCarthy, Fiona M -- Faircloth, Brant C -- Hoffmann, Federico G -- Glenn, Travis C -- Gabaldon, Toni -- Paten, Benedict -- Ray, David A -- 1U41HG006992-2/HG/NHGRI NIH HHS/ -- 1U41HG007234-01/HG/NHGRI NIH HHS/ -- 5U01HG004695/HG/NHGRI NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- U41 HG006992/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1254449. doi: 10.1126/science.1254449. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ed@soe.ucsc.edu david.a.ray@ttu.edu. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. ; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA. ; Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA. ; Department of Biology, University of Texas, Arlington, TX 76019, USA. ; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ; Genetic Information Research Institute, Mountain View, CA 94043, USA. ; Institute for Systems Biology, Seattle, WA 98109, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Institute of Experimental Pathology (ZMBE), University of Munster, D-48149 Munster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden. ; Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia. ; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. ; Departamento de Desarrollo Biotecnologico, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay. ; Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA. ; College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. ; School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA. ; Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. ; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA. ; Institute of Experimental Pathology (ZMBE), University of Munster, D-48149 Munster, Germany. ; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. ; Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. ; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan. ; Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA. ; Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA. ; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain. ; Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ed@soe.ucsc.edu david.a.ray@ttu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504731" target="_blank"〉PubMed〈/a〉
    Keywords: Alligators and Crocodiles/classification/*genetics ; Animals ; Biological Evolution ; Birds/classification/*genetics ; Conserved Sequence ; DNA Transposable Elements ; Dinosaurs/classification/*genetics ; *Evolution, Molecular ; Genetic Variation ; *Genome ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; Reptiles/classification/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-11
    Description: Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ripple, William J -- Estes, James A -- Beschta, Robert L -- Wilmers, Christopher C -- Ritchie, Euan G -- Hebblewhite, Mark -- Berger, Joel -- Elmhagen, Bodil -- Letnic, Mike -- Nelson, Michael P -- Schmitz, Oswald J -- Smith, Douglas W -- Wallach, Arian D -- Wirsing, Aaron J -- New York, N.Y. -- Science. 2014 Jan 10;343(6167):1241484. doi: 10.1126/science.1241484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24408439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora/anatomy & histology/classification/physiology ; *Ecological and Environmental Phenomena ; *Ecosystem ; *Extinction, Biological ; Humans ; Meat Products/statistics & numerical data ; Oceans and Seas ; Plants ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-16
    Description: The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to 〉30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. The mitochondrial genomes of all modern dogs are phylogenetically most closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thalmann, O -- Shapiro, B -- Cui, P -- Schuenemann, V J -- Sawyer, S K -- Greenfield, D L -- Germonpre, M B -- Sablin, M V -- Lopez-Giraldez, F -- Domingo-Roura, X -- Napierala, H -- Uerpmann, H-P -- Loponte, D M -- Acosta, A A -- Giemsch, L -- Schmitz, R W -- Worthington, B -- Buikstra, J E -- Druzhkova, A -- Graphodatsky, A S -- Ovodov, N D -- Wahlberg, N -- Freedman, A H -- Schweizer, R M -- Koepfli, K-P -- Leonard, J A -- Meyer, M -- Krause, J -- Paabo, S -- Green, R E -- Wayne, R K -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):871-4. doi: 10.1126/science.1243650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Section of Genetics and Physiology, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*genetics ; Base Sequence ; Breeding ; Dogs/*genetics ; Europe ; Genome, Mitochondrial/*genetics ; Molecular Sequence Data ; Phylogeny ; Wolves/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-02
    Description: Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 A resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 A resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greber, Basil J -- Boehringer, Daniel -- Leibundgut, Marc -- Bieri, Philipp -- Leitner, Alexander -- Schmitz, Nikolaus -- Aebersold, Ruedi -- Ban, Nenad -- England -- Nature. 2014 Nov 13;515(7526):283-6. doi: 10.1038/nature13895. Epub 2014 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. ; 1] Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25271403" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents ; Cryoelectron Microscopy ; Mass Spectrometry ; Mitochondria/*chemistry/ultrastructure ; Mitochondrial Proteins/*chemistry/metabolism/*ultrastructure ; Models, Molecular ; Molecular Conformation ; Peptidyl Transferases/metabolism ; RNA, Ribosomal/chemistry/metabolism/ultrastructure ; Ribosome Subunits, Large/*chemistry/genetics/*ultrastructure ; Sus scrofa/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-17
    Description: The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Karen S Y -- Siebert, Matthias -- Mertel, Sara -- Knoche, Elena -- Wegener, Stephanie -- Wichmann, Carolin -- Matkovic, Tanja -- Muhammad, Karzan -- Depner, Harald -- Mettke, Christoph -- Buckers, Johanna -- Hell, Stefan W -- Muller, Martin -- Davis, Graeme W -- Schmitz, Dietmar -- Sigrist, Stephan J -- New York, N.Y. -- Science. 2011 Dec 16;334(6062):1565-9. doi: 10.1126/science.1212991.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Institute for Biology, Free University Berlin, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/physiology ; Carrier Proteins/*physiology ; Drosophila ; Drosophila Proteins/genetics/*physiology ; Male ; Mutation ; Neurotransmitter Agents/*metabolism ; Presynaptic Terminals/*physiology ; Synapses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    facet.materialart.
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-16
    Description: Variation in daily activity patterns facilitates temporal partitioning of habitat and resources among species. Knowledge of temporal niche partitioning in paleobiological systems has been limited by the difficulty of obtaining reliable information about activity patterns from fossils. On the basis of an analysis of scleral ring and orbit morphology in 33 archosaurs, including dinosaurs and pterosaurs, we show that the eyes of Mesozoic archosaurs were adapted to all major types of diel activity (that is, nocturnal, diurnal, and cathemeral) and provide concrete evidence of temporal niche partitioning in the Mesozoic. Similar to extant amniotes, flyers were predominantly diurnal; terrestrial predators, at least partially, nocturnal; and large herbivores, cathemeral. These similarities suggest that ecology drives the evolution of diel activity patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Lars -- Motani, Ryosuke -- New York, N.Y. -- Science. 2011 May 6;332(6030):705-8. doi: 10.1126/science.1200043. Epub 2011 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolution and Ecology, University of California, Davis, CA 95616, USA. lschmitz@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493820" target="_blank"〉PubMed〈/a〉
    Keywords: *Activity Cycles ; Animals ; Behavior, Animal ; Birds/anatomy & histology/physiology ; Circadian Rhythm ; Dinosaurs/*anatomy & histology/classification/*physiology ; Ecosystem ; *Fossils ; Light ; *Night Vision ; Orbit/*anatomy & histology ; Phylogeny ; *Sclera ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-18
    Description: Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses and their transcription is regulated by a variety of transcription factors; principal among these is the family of interferon regulatory factors (IRFs). The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Litvak, Vladimir -- Ratushny, Alexander V -- Lampano, Aaron E -- Schmitz, Frank -- Huang, Albert C -- Raman, Ayush -- Rust, Alistair G -- Bergthaler, Andreas -- Aitchison, John D -- Aderem, Alan -- HHSN272200700038C/AI/NIAID NIH HHS/ -- HHSN272200700038C/PHS HHS/ -- HHSN272200800058C/AI/NIAID NIH HHS/ -- HSN272200800058C/PHS HHS/ -- R01 AI025032/AI/NIAID NIH HHS/ -- R01 AI032972/AI/NIAID NIH HHS/ -- R01AI025032/AI/NIAID NIH HHS/ -- R01AI032972/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 GM103511/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- U54GM103511/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Oct 18;490(7420):421-5. doi: 10.1038/nature11428. Epub 2012 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22982991" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Forkhead Transcription Factors/deficiency/genetics/*metabolism ; Gene Deletion ; Gene Expression Regulation/*immunology ; Inflammation/genetics/*immunology/*pathology ; Interferon Regulatory Factor-7/deficiency/genetics/*metabolism ; Interferon Type I/immunology ; Lung/immunology/pathology/virology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Reproducibility of Results ; Vesiculovirus/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-16
    Description: Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3alphabeta(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmeisser, Michael J -- Ey, Elodie -- Wegener, Stephanie -- Bockmann, Juergen -- Stempel, A Vanessa -- Kuebler, Angelika -- Janssen, Anna-Lena -- Udvardi, Patrick T -- Shiban, Ehab -- Spilker, Christina -- Balschun, Detlef -- Skryabin, Boris V -- Dieck, Susanne tom -- Smalla, Karl-Heinz -- Montag, Dirk -- Leblond, Claire S -- Faure, Philippe -- Torquet, Nicolas -- Le Sourd, Anne-Marie -- Toro, Roberto -- Grabrucker, Andreas M -- Shoichet, Sarah A -- Schmitz, Dietmar -- Kreutz, Michael R -- Bourgeron, Thomas -- Gundelfinger, Eckart D -- Boeckers, Tobias M -- England -- Nature. 2012 Apr 29;486(7402):256-60. doi: 10.1038/nature11015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699619" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Autistic Disorder/*genetics/pathology ; Behavior, Animal/*physiology ; Dendritic Spines/genetics ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Psychomotor Agitation/*genetics/pathology ; Receptors, Ionotropic Glutamate/metabolism ; Synapses/metabolism ; Up-Regulation ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...