Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CANCER ; EXPRESSION ; LINES ; AMPLIFICATION ; CHROMATIN ; SPECIFICATION ; STEM-CELLS ; expression profiling ; RETINOIC ACID ; PATTERN ; medulloblastoma ; MIDBRAIN ; Immunoprecipitation ; CEREBELLAR DEVELOPMENT ; AURORA KINASE ; OTX2
    Abstract: The transcription factor OTX2 has been implicated as an oncogene in medulloblastoma, which is the most common malignant brain tumor in children. It is highly expressed in most medulloblastomas and amplified in a subset of them. To study the role OTX2 has in medulloblastoma we investigated the downstream pathway of OTX2. We generated D425 medulloblastoma cells in which endogenous OTX2 can be silenced by inducible shRNA. Silencing of OTX2 strongly inhibited cell proliferation and resulted in a neuronal-like differentiation. Expression profiling of time courses after silencing showed a progressive change in gene expression for many cellular processes. Downregulated genes were highly enriched for cell cycle and visual perception genes, while upregulated genes were enriched for genes involved in development and differentiation. This shift is reminiscent of expression changes described during normal cerebellum development where proliferating granule progenitor cells have high OTX2 expression, which diminishes when these cells exit the cell cycle and start to differentiate. ChIP-on-chip analyses of OTX2 in D425 cells identified cell cycle and perception genes as direct OTX2 targets, while regulation of most differentiation genes appeared to be indirect. The expression of many directly regulated genes correlated to OTX2 expression in primary tumors, suggesting the in vivo relevance of these genes and their potential as targets for therapeutic intervention. These analyses provide more insight in the molecular network of OTX2, demonstrating that OTX2 is essential in medulloblastoma and directly drives proliferation by regulation of cell cycle genes
    Type of Publication: Journal article published
    PubMed ID: 21964830
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; PATHWAY ; GENES ; ACTIVATION ; MUTATIONS ; SUBGROUPS ; LANDSCAPE ; TETRAPLOID TUMOR-CELLS ; TBR1
    Abstract: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.
    Type of Publication: Journal article published
    PubMed ID: 22832583
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; GROWTH ; TUMORS ; NERVOUS-SYSTEM ; ADULT ; MOUSE MODELS ; PEDIATRIC MEDULLOBLASTOMA ; HEDGEHOG PATHWAY INHIBITOR ; TERT PROMOTER MUTATIONS ; ITRACONAZOLE
    Abstract: Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children 〉3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant.
    Type of Publication: Journal article published
    PubMed ID: 24651015
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; GENE ; GENOME ; MUTATIONS ; STEM-CELLS ; ZINC-FINGER PROTEIN ; T-CELL LYMPHOMAGENESIS ; MYC ; SUPER-ENHANCERS ; SUBGROUP
    Abstract: Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
    Type of Publication: Journal article published
    PubMed ID: 25043047
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: RECEPTOR ; CANCER ; GENES ; ASSOCIATION ; PHENOTYPE ; HETEROGENEITY ; N-MYC ; SIGNATURES ; ALK ; DNA METHYLATION DATA
    Abstract: Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.
    Type of Publication: Journal article published
    PubMed ID: 26121086
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...