Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CANCER ; PATHWAY ; GENES ; ACTIVATION ; MUTATIONS ; SUBGROUPS ; LANDSCAPE ; TETRAPLOID TUMOR-CELLS ; TBR1
    Abstract: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.
    Type of Publication: Journal article published
    PubMed ID: 22832583
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; transcription ; COMPLEX ; MUTATIONS ; STEM-CELLS ; MOUSE MODEL ; histone deacetylase inhibitor ; RETINOIC ACID ; DISTINCT SUBGROUPS ; DRIVEN MEDULLOBLASTOMA
    Abstract: The unexpectedly high frequency and universality of alterations to the chromatin machinery is one of the most striking themes emerging from the current deluge of cancer genomics data. Medulloblastoma (MB), a malignant pediatric brain tumor, is no exception to this trend, with a wealth of recent studies indicating multiple alterations at all levels of chromatin processing. MB is typically now regarded as being composed of four major molecular entities (WNT, SHH, Group 3 and Group 4), which vary in their clinical and biological characteristics. Similarities and differences across these subgroups are also reflected in the specific chromatin modifiers that are found to be altered in each group, and each new cancer genome sequence or microarray profile is adding to this important knowledge base. These data are fundamentally changing our understanding of tumor developmental pathways, not just for MB but also for cancer as a whole. They also provide a new class of targets for the development of rational, personalized therapeutic approaches. The mechanisms by which these chromatin remodelers are dysregulated in MB, and the consequences both for future basic research and for translation to the clinic, will be examined here.
    Type of Publication: Journal article published
    PubMed ID: 23432644
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; DISTINCT ; prognosis ; PROGRESSION ; chemotherapy ; ABERRATIONS ; MUTATIONS ; CHILDREN ; ADOLESCENTS ; INTRATUMOR HETEROGENEITY
    Abstract: BACKGROUND: Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns. METHODS: We retrospectively identified a discovery cohort of all recurrent medulloblastomas at the Hospital for Sick Children (Toronto, ON, Canada) from 1994 to 2012 (cohort 1), and established molecular subgroups using a nanoString-based assay on formalin-fixed paraffin-embedded tissues or frozen tissue. The anatomical site of recurrence (local tumour bed or leptomeningeal metastasis), time to recurrence, and survival after recurrence were assessed in a subgroup-specific manner. Two independent, non-overlapping cohorts (cohort 2: samples from patients with recurrent medulloblastomas from 13 centres worldwide, obtained between 1991 and 2012; cohort 3: samples from patients with recurrent medulloblastoma obtained at the NN Burdenko Neurosurgical Institute [Moscow, Russia] between 1994 and 2011) were analysed to confirm and validate observations. When possible, molecular subgrouping was done on tissue obtained from both the initial surgery and at recurrence. RESULTS: Cohort 1 consisted of 30 patients with recurrent medulloblastomas; nine with local recurrences, and 21 with metastatic recurrences. Cohort 2 consisted of 77 patients and cohort 3 of 96 patients with recurrent medulloblastoma. Subgroup affiliation remained stable at recurrence in all 34 cases with available matched primary and recurrent pairs (five pairs from cohort 1 and 29 pairs from cohort 2 [15 SHH, five group 3, 14 group 4]). This finding was validated in 17 pairs from cohort 3. When analysed in a subgroup-specific manner, local recurrences in cohort 1 were more frequent in SHH tumours (eight of nine [89%]) and metastatic recurrences were more common in group 3 and group 4 tumours (17 of 20 [85%] with one WNT, p=0.0014, local vs metastatic recurrence, SHH vs group 3 vs group 4). The subgroup-specific location of recurrence was confirmed in cohort 2 (p=0.0013 for local vs metastatic recurrence, SHH vs group 3 vs group 4,), and cohort 3 (p〈0.0001). Treatment with craniospinal irradiation at diagnosis was not significantly associated with the anatomical pattern of recurrence. Survival after recurrence was significantly longer in patients with group 4 tumours in cohort 1 (p=0.013) than with other subgroups, which was confirmed in cohort 2 (p=0.0075), but not cohort 3 (p=0.70). INTERPRETATION: Medulloblastoma does not change subgroup at the time of recurrence, reinforcing the stability of the four main medulloblastoma subgroups. Significant differences in the location and timing of recurrence across medulloblastoma subgroups have potential treatment ramifications. Specifically, intensified local (posterior fossa) therapy should be tested in the initial treatment of patients with SHH tumours. Refinement of therapy for patients with group 3 or group 4 tumours should focus on metastases. FUNDING: Canadian Institutes of Health Research, National Institutes of Health, Pediatric Brain Tumor Foundation, Garron Family Chair in Childhood Cancer Research at The Hospital for Sick Children and The University of Toronto.
    Type of Publication: Journal article published
    PubMed ID: 24140199
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; CELLS ; DISTINCT ; CENTRAL-NERVOUS-SYSTEM ; METHYLATION ; ADULT ; BRAIN-TUMORS ; TELOMERASE ACTIVITY ; RISK STRATIFICATION ; SELF-RENEWAL
    Abstract: Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in 〈5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.
    Type of Publication: Journal article published
    PubMed ID: 24174164
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; GROWTH ; TUMORS ; NERVOUS-SYSTEM ; ADULT ; MOUSE MODELS ; PEDIATRIC MEDULLOBLASTOMA ; HEDGEHOG PATHWAY INHIBITOR ; TERT PROMOTER MUTATIONS ; ITRACONAZOLE
    Abstract: Smoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children 〉3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant.
    Type of Publication: Journal article published
    PubMed ID: 24651015
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: RECEPTOR ; CANCER ; EXPRESSION ; INHIBITION ; PATHWAY ; MIGRATION ; HEPATOCYTE GROWTH-FACTOR ; C-MET ; PEDIATRIC MEDULLOBLASTOMA ; GENETIC PROFILES
    Abstract: Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here we report that the analysis of several large non-overlapping cohorts of medulloblastoma patients reveal MET kinase as a marker of sonic hedgehog (SHH) driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that SHH medulloblastoma patients may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma.
    Type of Publication: Journal article published
    PubMed ID: 25391241
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: CANCER ; PATHWAY ; ACTIVATION ; DNA-DAMAGE ; MULTICENTER TRIAL ; PHOSPHATASE ; PPM1D ; CHEMOKINE RECEPTOR CXCR4 ; P53 FUNCTION ; CHK2 KINASE
    Abstract: Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1alpha activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.Oncogene advance online publication, 17 march 2014; doi:10.1038/onc.2014.37.
    Type of Publication: Journal article published
    PubMed ID: 24632620
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; radiation ; leukemia ; MUTATIONS ; FREQUENT ; CHILDREN ; METHYLATION ; DECITABINE ; MULTIPLE ; PROTOCADHERIN PCDH10
    Abstract: PURPOSE: The aim of this study was to investigate the genetic and epigenetic mechanisms contributing to PCDH10 down-regulation in medulloblastoma. We examined the role of PCDH10 as a mediator of medulloblastoma cell proliferation, cell cycle progression, and cell migration. METHODS: We identified a focal homozygous deletion of PCDH10 in medulloblastoma by surveying a cohort of 212 tumours by Affymetrix SNP array analysis. PCDH10 expression was assessed by quantitative reverse transcriptase PCR in a series of 26 tumours. The promoter methylation status of PCDH10 was determined using methylation specific PCR and Sequenom MassCLEAVE analysis. Functional studies examining the role of PCDH10 in medulloblastoma development were performed by re-expression of PCDH10 in the DAOY medulloblastoma cell line, and then, cell proliferation, cell cycle distribution, and cell migration assays were performed. RESULTS: We report a very focal homozygous deletion on chromosome 4q28.3 harbouring the PCDH10 gene. We demonstrate that PCDH10 transcription is down-regulated in 19/26 (73%) of medulloblastomas suggesting that other mechanisms also could be involved in gene repression. We found that DNA hypermethylation contributed to the deregulation of PCDH10 in 11/44 (25%) of medulloblastoma cell lines and primary tumours. Using a stable cell line (DAOY) re-expressing PCDH10, we observed that cell migration was impaired upon restoration of PCDH10 expression. CONCLUSIONS: Our findings suggest that genetic and epigenetic deregulation of PCDH10 occurs in a significant portion of medulloblastoma patients. Failure to express PCDH10 may result in loss of inhibition of cell migration, thereby contributing to medulloblastoma progression.
    Type of Publication: Journal article published
    PubMed ID: 21597995
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CANCER ; CELLS ; DISEASE ; DISTINCT ; GENE-EXPRESSION ; MESSENGER-RNA ; alternative splicing ; WNT ; BRAIN-TUMORS ; medulloblastoma ; molecular diagnostics ; SUBGROUPS ; pediatric cancer ; BIOLOGICAL NETWORKS ; SHH ; Molecular subgroup ; Group 3 ; Group 4 ; BETA-2-CHIMAERIN ; Neuronal development
    Abstract: Medulloblastoma comprises four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P 〈 6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals overrepresentation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup-specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups.
    Type of Publication: Journal article published
    PubMed ID: 22358458
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: CANCER ; MUTATION ; TARGETS ; METHYLATION ; EMBRYONIC STEM-CELLS ; HYPERMETHYLATION ; GLIOBLASTOMA ; POLYCOMB ; INTRINSIC PONTINE GLIOMAS ; HISTONE H3.3
    Abstract: Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in approximately 50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.
    Type of Publication: Journal article published
    PubMed ID: 24183680
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...