Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CELLS ; CELL ; Germany ; INHIBITION ; PROTEIN ; PROTEINS ; COMPLEX ; MECHANISM ; DOMAIN ; FORM ; PARTICLES ; DEGRADATION ; ANTIVIRAL ACTIVITY ; HIV-1 VIF ; LEUKEMIA-VIRUS ; VIF ; 2 DISTINCT ; ANTIRETROVIRAL DEFENSE ; CYTIDINE DEAMINASES ; EDITING ENZYME APOBEC3G ; MURINE APOBEC3 ; SOCS-BOX ; TYPE-1 VIF
    Abstract: The APOBEC3 cytidine deaminases are part of the intrinsic defense of cells against retroviruses. Lentiviruses and spumaviruses have evolved essential accessory proteins, Vif and Bet, respectively, which counteract the APOBEC3 proteins. We show here that Bet of the Prototype foamy virus inhibits the antiviral APOBEC3C activity by a mechanism distinct to Vif: Bet forms a complex with APOBEC3C without inducing its degradation. Bet abolished APOBEC3C dimerization as shown by co-immunoprecipitation and cross-linking experiments. These findings implicate a physical interaction between Bet and the APOBEC3C. Subsequently, we identified the Bet interaction domain in human APOBEC3C in the predicted APOBEC3C dimerization site. Taken together, these data support the hypothesis that Bet inhibits incorporation of APOBEC3Cs into retroviral particles. Bet likely achieves this by trapping APOBEC3C protein in complexes rendering them unavailable for newly generated viruses due to direct immobilization
    Type of Publication: Journal article published
    PubMed ID: 19074429
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: RECEPTOR ; CELLS ; EXPRESSION ; CELL ; Germany ; SYSTEM ; PROTEIN ; PROTEINS ; CONTRAST ; TYPE-1 ; virus ; resistance ; HUMAN IMMUNODEFICIENCY VIRUS ; REPLICATION ; sensitivity ; HUMAN-IMMUNODEFICIENCY-VIRUS ; virion infectivity factor ; TRANSMISSION ; DEPLETION ; ENZYME APOBEC3G ; CYTIDINE DEAMINASES ; TYPE-1 VIF ; Type ; DOMESTIC CAT ; ANEMIA VIRUS ; ANTIRETROVIRAL ACTIVITY ; HIV-1 REVERSE TRANSCRIPTION ; PUMA-CONCOLOR
    Abstract: To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Delta vif FIV, felid A3Z2s did not show any antiviral activity against Delta vif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether Vif(FIV) can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1. Vif(FIV) was constructed. This HIV-1. VifFIV was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor
    Type of Publication: Journal article published
    PubMed ID: 20444897
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...