Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; ANGIOGENESIS ; APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; ENDOTHELIAL-CELLS ; EXPRESSION ; FLK-1/KDR ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; INVASION ; IONIZING-RADIATION ; IRRADIATION ; proliferation ; PROTECTION ; radiotherapy ; SURVIVAL ; tumor ; TUMOR-CELLS
    Abstract: In recent decades, radiation research has concentrated primarily on the cancer cell compartment. Much less is known about the effect of ionizing radiation on the endothelial cell compartment and the complex interaction between tumor cells and their microenvironment. Here we report that ionizing radiation is a potent antiangiogenic agent that inhibits endothelial cell survival, proliferation, tube formation and invasion. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor were able to reduce the radiosensitivity of endothelial cells. Yet, it is also found that radiation induces angiogenic factor production by tumor cells that can be abrogated by the addition of antiangiogenic agents. Receptor tyrosine kinase inhibitors of Flk-1/KDR/VEGFR2, FGFR1 and PDGFRbeta, SU5416, and SU6668 enhanced the antiangiogenic effects of direct radiation of the endothelial cells. In a coculture system of PC3 prostate cancer cells and endothelial cells, isolated irradiation of the PC3 cells enhanced endothelial cell invasiveness through a Matrigel matrix, which was inhibited by SU5416 and SU6668. Furthermore, ionizing radiation up-regulated VEGF and basic fibroblast growth factor in PC3 cells and VEGFR2 in endothelial cells. Together these findings suggest a radiation-inducible protective role for tumor cells in the support of their associated vasculature that may be down- regulated by coadministration of angiogenesis inhibitors., These results rationalize concurrent administration of angiogenesis inhibitors and radiotherapy in cancer treatment
    Type of Publication: Journal article published
    PubMed ID: 12839971
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: ENVIRONMENT ; RECEPTOR ; ANGIOGENESIS ; CANCER ; CELLS ; ENDOTHELIAL-CELLS ; EXPRESSION ; GROWTH ; INHIBITOR ; tumor ; AGENTS ; CELL ; Germany ; human ; NETWORK ; RISK ; GENE ; GENES ; PROTEIN ; PROTEINS ; DRUG ; COMPONENTS ; MICE ; PATIENT ; knockout ; STAGE ; PROGRESSION ; DESIGN ; INDUCED APOPTOSIS ; METASTASIS ; COLORECTAL-CANCER ; COMPONENT ; cancer risk ; RECURRENCE ; COLON-CANCER ; CANCER-PATIENTS ; STRATEGIES ; REVEALS ; systems biology ; CANCER PATIENTS ; pancreatic cancer ; pancreatic carcinoma ; chronic pancreatitis ; ACQUIRED-RESISTANCE ; INHIBITORS ; signaling ; AGENT ; RE ; PANCREATIC-CANCER ; PATTERN ; TUMOR-GROWTH ; cancer therapy ; PANCREATITIS ; regulation ; antiangiogenic therapy ; LEVEL ; pancreatic ; USA ; DRUGS ; INCREASED RISK ; CANCER-RISK ; ENDOTHELIAL-CELL ; HOMEOSTASIS ; SPECIMENS ; peroxisome ; EGFR INHIBITORS ; GLUCOSYLCERAMIDE SYNTHASE ; homeostatic balance ; PPAR-DELTA
    Abstract: A shift of the angiogenic balance to the proangiogenic state, termed the "angiogenic switch," is a hallmark of cancer progression. Here we devise a strategy for identifying genetic participants of the angiogenic switch based on inverse regulation of genes in human endothelial cells in response to key endogenous pro- and antiangiogenic proteins. This approach reveals a global network pattern for vascular homeostasis connecting known angiogenesis-related genes with previously unknown signaling components. We also demonstrate that the angiogenic switch is governed by simultaneous regulations of multiple genes organized as transcriptional circuitries. In pancreatic cancer patients, we validate the transcriptome-derived switch of the identified "angiogenic network:" The angiogenic state in chronic pancreatitis specimens is intermediate between the normal (angiogenesis off) and neoplastic (angiogenesis on) condition, suggesting that aberrant proangiogenic environment contributes to the increased cancer risk in patients with chronic pancreatitis. In knockout experiments in mice, we show that the targeted removal of a hub node (peroxisome proliferative-activated receptor delta) of the angiogenic network markedly impairs angiogenesis and tumor growth. Further, in tumor patients, we show that peroxisome proliferative-activated receptor 8 expression levels are correlated with advanced pathological tumor stage, increased risk for tumor recurrence, and distant metastasis. Our results therefore also may contribute to the rational design of antiangiogenic cancer agents; whereas "narrow" targeted cancer drugs may fail to shift the robust angiogenic regulatory network toward antiangiogenesis, the network may be more vulnerable to multiple or broad-spectrum inhibitors or to the targeted removal of the identified angiogenic "hub" nodes
    Type of Publication: Journal article published
    PubMed ID: 17652168
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...