Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-12
    Description: Touch sensation is essential for behaviours ranging from environmental exploration to social interaction; however, the underlying mechanisms are largely unknown. In Drosophila larvae, two types of sensory neurons, class III and class IV dendritic arborization neurons, tile the body wall. The mechanotransduction channel PIEZO in class IV neurons is essential for sensing noxious mechanical stimuli but is not involved in gentle touch. On the basis of electrophysiological-recording, calcium-imaging and behavioural studies, here we report that class III dendritic arborization neurons are touch sensitive and contribute to gentle-touch sensation. We further identify NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) family of ion channels, as a mechanotransduction channel for gentle touch. NOMPC is highly expressed in class III neurons and is required for their mechanotransduction. Moreover, ectopic NOMPC expression confers touch sensitivity to the normally touch-insensitive class IV neurons. In addition to the critical role of NOMPC in eliciting gentle-touch-mediated behavioural responses, expression of this protein in the Drosophila S2 cell line also gives rise to mechanosensitive channels in which ion selectivity can be altered by NOMPC mutation, indicating that NOMPC is a pore-forming subunit of a mechanotransduction channel. Our study establishes NOMPC as a bona fide mechanotransduction channel that satisfies all four criteria proposed for a channel to qualify as a transducer of mechanical stimuli and mediates gentle-touch sensation. Our study also suggests that different mechanosensitive channels may be used to sense gentle touch versus noxious mechanical stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Zhiqiang -- Zhang, Wei -- He, Ye -- Gorczyca, David -- Xiang, Yang -- Cheng, Li E -- Meltzer, Shan -- Jan, Lily Yeh -- Jan, Yuh Nung -- 5R01MH084234/MH/NIMH NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 MH084234/MH/NIMH NIH HHS/ -- R37 NS040929/NS/NINDS NIH HHS/ -- R37NS040929/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 10;493(7431):221-5. doi: 10.1038/nature11685. Epub 2012 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Dendrites/physiology ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/cytology/growth & development/*physiology ; Larva/cytology/physiology ; Mechanotransduction, Cellular/*physiology ; Molecular Sequence Data ; Mutation ; Protein Subunits/chemistry/genetics/*metabolism ; Sequence Alignment ; Touch/*physiology ; Transient Receptor Potential Channels/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-21
    Description: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guofan -- Fang, Xiaodong -- Guo, Ximing -- Li, Li -- Luo, Ruibang -- Xu, Fei -- Yang, Pengcheng -- Zhang, Linlin -- Wang, Xiaotong -- Qi, Haigang -- Xiong, Zhiqiang -- Que, Huayong -- Xie, Yinlong -- Holland, Peter W H -- Paps, Jordi -- Zhu, Yabing -- Wu, Fucun -- Chen, Yuanxin -- Wang, Jiafeng -- Peng, Chunfang -- Meng, Jie -- Yang, Lan -- Liu, Jun -- Wen, Bo -- Zhang, Na -- Huang, Zhiyong -- Zhu, Qihui -- Feng, Yue -- Mount, Andrew -- Hedgecock, Dennis -- Xu, Zhe -- Liu, Yunjie -- Domazet-Loso, Tomislav -- Du, Yishuai -- Sun, Xiaoqing -- Zhang, Shoudu -- Liu, Binghang -- Cheng, Peizhou -- Jiang, Xuanting -- Li, Juan -- Fan, Dingding -- Wang, Wei -- Fu, Wenjing -- Wang, Tong -- Wang, Bo -- Zhang, Jibiao -- Peng, Zhiyu -- Li, Yingxiang -- Li, Na -- Wang, Jinpeng -- Chen, Maoshan -- He, Yan -- Tan, Fengji -- Song, Xiaorui -- Zheng, Qiumei -- Huang, Ronglian -- Yang, Hailong -- Du, Xuedi -- Chen, Li -- Yang, Mei -- Gaffney, Patrick M -- Wang, Shan -- Luo, Longhai -- She, Zhicai -- Ming, Yao -- Huang, Wen -- Zhang, Shu -- Huang, Baoyu -- Zhang, Yong -- Qu, Tao -- Ni, Peixiang -- Miao, Guoying -- Wang, Junyi -- Wang, Qiang -- Steinberg, Christian E W -- Wang, Haiyan -- Li, Ning -- Qian, Lumin -- Zhang, Guojie -- Li, Yingrui -- Yang, Huanming -- Liu, Xiao -- Wang, Jian -- Yin, Ye -- Wang, Jun -- 268513/European Research Council/International -- England -- Nature. 2012 Oct 4;490(7418):49-54. doi: 10.1038/nature11413. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992520" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animal Shells/chemistry/*growth & development ; Animals ; Apoptosis Regulatory Proteins/genetics ; Crassostrea/*genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental/genetics ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Larva/genetics/growth & development ; Mass Spectrometry ; Molecular Sequence Annotation ; Molecular Sequence Data ; Polymorphism, Genetic/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, DNA ; Stress, Physiological/genetics/*physiology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-11
    Description: Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Hong -- Morey, Robert -- O'Neil, Ryan C -- He, Yupeng -- Daughtry, Brittany -- Schultz, Matthew D -- Hariharan, Manoj -- Nery, Joseph R -- Castanon, Rosa -- Sabatini, Karen -- Thiagarajan, Rathi D -- Tachibana, Masahito -- Kang, Eunju -- Tippner-Hedges, Rebecca -- Ahmed, Riffat -- Gutierrez, Nuria Marti -- Van Dyken, Crystal -- Polat, Alim -- Sugawara, Atsushi -- Sparman, Michelle -- Gokhale, Sumita -- Amato, Paula -- Wolf, Don P -- Ecker, Joseph R -- Laurent, Louise C -- Mitalipov, Shoukhrat -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 10;511(7508):177-83. doi: 10.1038/nature13551. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3]. ; 1] Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA [2]. ; 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA. ; 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA. ; Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA. ; 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [2] Department of Obstetrics and Gynecology, South Miyagi Medical Center, Shibata-gun, Miyagi 989-1253, Japan (M.T.); Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden (A.P.). ; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA. ; University Pathologists LLC, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02118, USA. ; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3] Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cellular Reprogramming ; Chromosome Aberrations ; Chromosomes, Human, X/genetics/metabolism ; DNA Copy Number Variations ; DNA Methylation ; Genome-Wide Association Study ; Genomic Imprinting ; Humans ; Nuclear Transfer Techniques/standards ; Pluripotent Stem Cells/cytology/*metabolism ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-07
    Description: Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jun -- Okamura, Daiji -- Li, Mo -- Suzuki, Keiichiro -- Luo, Chongyuan -- Ma, Li -- He, Yupeng -- Li, Zhongwei -- Benner, Chris -- Tamura, Isao -- Krause, Marie N -- Nery, Joseph R -- Du, Tingting -- Zhang, Zhuzhu -- Hishida, Tomoaki -- Takahashi, Yuta -- Aizawa, Emi -- Kim, Na Young -- Lajara, Jeronimo -- Guillen, Pedro -- Campistol, Josep M -- Esteban, Concepcion Rodriguez -- Ross, Pablo J -- Saghatelian, Alan -- Ren, Bing -- Ecker, Joseph R -- Izpisua Belmonte, Juan Carlos -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 21;521(7552):316-21. doi: 10.1038/nature14413. Epub 2015 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA. ; 1] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] The Salk Institute for Biological Studies, Genomic Analysis Laboratory, La Jolla, California 92037, USA. ; The Salk Institute for Biological Studies, Genomic Analysis Laboratory, La Jolla, California 92037, USA. ; The Salk Institute for Biological Studies, Integrated Genomics, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. ; 1] The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA [2] Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan. ; Grado en Medicina, Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, Guadalupe 30107, Spain. ; 1] Grado en Medicina, Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, Guadalupe 30107, Spain [2] Fundacion Pedro Guillen, Clinica Cemtro, Avenida Ventisquero de la Condesa, 42, 28035 Madrid, Spain. ; Hospital Clinic of Barcelona, Carrer Villarroel, 170, 08036 Barcelona, Spain. ; University of California, Davis, Davis, California 95616, USA. ; The Salk Institute for Biological Studies, Peptide Biology Laboratory, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25945737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques/methods ; Cell Line ; *Chimera ; Embryonic Stem Cells/cytology ; Female ; Germ Layers/cytology ; Humans ; Induced Pluripotent Stem Cells/cytology ; Male ; Mice ; Pan troglodytes ; Pluripotent Stem Cells/*cytology/metabolism ; Regenerative Medicine ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...