Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (10)
  • Chlamydomonas  (6)
  • Nicotiana plumbaginifolia  (6)
  • 1990-1994  (22)
  • 1
    ISSN: 1617-4623
    Keywords: Mutagenized seeds ; Nicotiana plumbaginifolia ; Ethanol selection ; Alcohol dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Six independent mutant lines ofNicotiana plumbaginifolia resistant to ethanol, designated E3, E8, E101, E112, E144 and E251, were isolated as germinating seedlings on selective medium. In all cases, resistance to ethanol was conferred by a single recessive nuclear mutation at the same locus. Mutant seeds and pollen lacked detectable ADH activity, with the exception of E251 where a residual activity was detected. An antiserum directed againstArabidopsis thaliana ADH detected an ADH-related polypeptide of 44 kDa present in wild-type seeds and, to a lesser extent, in the seeds of the leaky mutant E251. No ADH-related polypeptide could be detected in seeds of the other mutants. However, all of them had a nearly normal level of ADH mRNA except one which did not synthesize any mRNA. These results suggest that these ethanol-resistant mutants are impaired in one of the structural genes coding for alcohol dehydrogenase. The corresponding locus has been designatedAdh1.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Nicotiana plumbaginifolia ; Nicotiana tabacum ; GATA-binding factor ; Nitrate reductase ; PCR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-CX17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Chlamydomonas ; Chloroplast Hemoglobin ; Pyrenoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When the green unicellular alga Chlamydomonas eugametos is grown under light/dark regimes, nuclear genes are periodically activated in response to the changes in light conditions. These genetic responses are dependent upon the activation of genes associated with photosynthesis (LI616 and LI637), nonphotosynthetic photoreceptors (LI410 and LI818) and the biological clock (LI818). We report here that the LI410 and LI637 genes are part of a small gene family encoding hemoglobins (Hbs) related to those from two unicellular eukaryotes, the ciliated protozoa Paramecium caudatum and Tetrahymena pyriformis, and from the cyanobacterium Nostoc commune. Investigations of the intracellular localization of C. eugametos Hbs by means of immunogold electron microscopy indicate that these proteins are predominantly located in the chloroplast, particularly in the pyrenoid and the thylakoid region. To our knowledge, this constitutes the first evidence for the presence of Hbs in chloroplasts. Alignment of the LI637 cDNA nucleotide sequence with its corresponding genomic sequence indicates that the L1637 gene contains three introns, the positions of which are compared with those in the Hb genes of plants, animals and the ciliate P. caudatum. Although the LI637 gene possesses a three-intron/four-exon pattern similar to that of plant leghemoglobin genes, introns are inserted at different positions. Similarly the position of the single intron in the P. caudatum gene differs from the intron sites in the LI637 gene. The latter observations argue against the current view that all eukaryotic Hbs have evolved from a common ancestor having a gene structure identical to that of plant or animal Hbs.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Bud site selection ; Guanine exchange factor ; Ras
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Guanine Exchange Factor (GEF) activity for Ras proteins has been associated with a conserved domain in Cdc25p, Sdc25p in Saccharomyces cerevisiae and several other proteins recently found in other eukaryotes. We have assessed the structure-function relationships between three different members of this family in S. cerevisiae, Cdc25p, Sdc25p and Bud5p. Cdc25p controls the Ras pathway, whereas Bud5p controls bud site localization. We demonstrate that the GEF domain of Sdc25p is closely related to that of Cdc25p. We first constructed a thermosensitive allele of SDC25 by specifically altering amino acid positions known to be changed in the cdc25-1 mutation. Secondly, we constructed three chimeric genes from CDC25 and SDC25, the products of which are as active in the Ras pathway as are the wild-type proteins. In contrast, similar chimeras made between CDC25 and BUD5 lead to proteins that are inactive both in the Ras and budding control pathways. This difference in the ability of chimeric proteins to retain activity allows us to define two subclasses of structurally different GEFs: Cdc25p and Sdc25p are Ras-specific GEFs, and Bud5p is a putative GEF for the Rsr1/Bud1 Rap-like protein.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Tobacco ; Nicotiana plumbaginifolia ; Nitrate reductase deficient mutants ; Functional complementation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The homeologous nitrate reductase (NR) structural genes from tobacco were used to complement nitrate reductase deficient mutants from tobacco and Nicotiana plumbaginifolia. A plasmid conferring kanamycin resistance and lambda genomic clones carrying the tobacco wild-type alleles of the genes were co-electroporated in protoplasts of the tobacco mutant. Among 266 plants regenerated from kanamycin resistant colonies, 3 were able to grow permanently on a medium containing nitrate as sole nitrogen source. One of these three plants was further characterized. The ability to grow on nitrate was transmitted as a new single Mendelian dominant marker linked to kanamycin resistance. Molecular analysis of this clone confirmed the integration of a copy of the wild-type allele, and the synthesis at a low level of an active NR. This NR activity is sufficient to regulate both exogenous wild-type and endogenous mutated alleles of the genes at the transcriptional level. A N. plumbaginifolia mutant carrying a mutation impairing NR mRNA production was transformed by Agrobacterium mediated transfer of the wild-type tobacco nia-2 gene cloned into a binary vector. Similarly, kanamycin resistant calli were tested for their ability to grow on nitrate. Among 70 kanamycin resistant transformants, 7 were restored for nitrate assimilation. Molecular analysis revealed the integration of the tobacco gene, and the synthesis at a low level of the NR mRNA and of a nitrate inducible active NR.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Translation ; Splicing ; Paromomycin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The MSS51 gene product has been previously shown to be involved in the splicing of the mitochondrial pre-mRNA of cytochrome oxidase subunit I (COX1). We show here that it is specifically required for the translation of the COX1 mRNA. Furthermore, the paromomycin-resistance mutation (P inf454 supR ) which affects the 15 S mitoribosomal RNA, interferes, directly or indirectly, with the action of the MSS51 gene product. Possible roles of the MSS51 protein on the excision of COX1 introns are discussed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1617-4623
    Keywords: Chlamydomonas ; Intron ; Apocytochrome b-Gene conversion ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrial DNA of the two interfertile algal species Chlamydomonas smithii and Chlamydomonas reinhardtii are co-linear with the exception of ca. 1 kb insertion (the a insert) present in C. smithii DNA only. In vegetative diploids resulting from interspecific crosses, mitochondrial genomes are transmitted biparentally except for the a insert which is transmitted to all C. reinhardtii molecules in a manner reminiscent of the intron-mediated conversion event that occurs at the omega locus in yeast mitochondria, under the action of the I-SceI endonuclease. Here we report that the α insert corresponds to a typical group I intron of 1075 bp, inserted within the gene for apocytochrome b and containing a 237 codon open reading frame (ORF). We also report the complete sequence of the apocytochrome b gene of C. smithii. Comparison with the sequence of the same gene in C. reinhardtii reveals the precise intron insertion site. These data, together with the previous genetic data provide the first example of intron mobility in mitochondria of the plant kingdom. The product of the intronic ORF shows 36% amino acid identity with the I-SceI endonuclease whereas the intron ribozyme shows a 60% identity at the nucleotide level with the Neurospora crassa cob · 1 intron. The possibility of a recent horizontal transfer of introns between fungi and algae is discussed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Proline ; DNA sequencing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report here the isolation of temperature-sensitive mutants of the yeast Saccharomyces cerevisiae which exhibit cdc phenotypes. The recessive mutations defined four complementation groups, named ore1, ore2, ore3 and ore4. At the non-permissive temperature, strains bearing these mutations arrested in the G1 phase of the cell cycle. The wild-type allele of the gene altered in ore2 mutants was cloned. The nucleotide sequence of a fragment which can complement the mutation showed the presence of an open reading frame capable of encoding a protein with 286 amino acid residues. The deduced amino acid sequence showed 25% identity with that of the Escherichia coli Δ1-pyrroline-5-carboxylate reductase, an enzyme of the pathway for the biosynthesis of proline. The ore2 mutants, correspondingly, were found to be capable of growing at the non-permissive temperature on a synthetic medium supplemented with proline. In addition, the chromosomal location of the gene and its restriction map were compatible with those previously reported for the PRO3 gene which encodes the S. cerevisiae Δ1-pyrroline-5-carboxylate reductase.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1617-4623
    Keywords: Transposable element ; Nitrate reductase ; Nicotiana plumbaginifolia ; γ-Ray mutagenesis ; Nucleotide sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after γ-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 by insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 by terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5′ and 3′ ends of dTnp1 together with a perfect palindrome located after the 5′ inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1617-4623
    Keywords: Mutagenized seeds ; Nicotiana plumbaginifolia ; Auxin-resistant mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mutant lines of Nicotiana plumbaginifolia resistant to the synthetic auxins 1-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA) were isolated as germinating seedlings on selective medium. In each case, resistance was conferred by a single recessive nuclear mutation at one of 3 loci designated iba1, iba2 and iba3. Labelling studies with 14C NAA suggest that resistance was not due to changes in the uptake or metabolism of NAA. Plants homozygous for the iba1 mutation exhibit a syndrome of atypical germination and growth suggestive of a defect in the biosynthesis, metabolism or localization of abscisic acid. Wild-type seeds treated with gibberellin exhibit the same syndrome, including resistance to NAA and IBA. On the basis of these observations, we propose that auxin toxicity in seeds may be mediated by a block in gibberellin biosynthesis.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...