Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Corticosteroids  (1)
  • Indomethacin  (1)
  • Epithelial transport
  • Dicarboxylate transport
  • Electron-attracting groups
  • 1990-1994  (2)
  • 1991  (2)
Collection
Publisher
Years
  • 1990-1994  (2)
Year
  • 1
    ISSN: 1432-2013
    Keywords: Cyclic GMP ; Prostaglandins ; Prostacyclins ; Thromboxane B2 ; Probenecid ; Indomethacin ; Phosphodiesterase inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using the stop-flow peritubular capillary microperfusion method the inhibitory potency (apparent K i values) of cyclic nucleotides and prostanoids against contraluminal p-aminohippurate (PAH), dicarboxylate and sulphate transport was evaluated. Conversely the contraluminal transport rate of labelled cAMP, cGMP, prostaglandin E2, and prostaglandin D2 was measured and the inhibition by different substrates was tested. Cyclic AMP and its 8-bromo and dibutyryl analogues inhibited contraluminal PAH transport with an app. K i, PAH of 3.4, 0.63 and 0.52 mmol/l. The respective app. K i,PAH values of cGMP and its analogues are with 0.27, 0.04 and 0.05 mmol/l, considerably lower. None of the cyclic nucleotides tested interacted with contraluminal dicarboxylate, sulphate and N 1-methylnicotinamide transport. ATP, ADP, AMP, adenosine and adenine as well as GTP, GDP, GMP, guanosine and guanine did not inhibit PAH transport while most of the phosphodiesterase inhibitors tested did. Time-dependent contraluminal uptake of [3H]cAMP and [3H]cGMP was measured at different starting concentrations and showed facilitated diffusion kinetics with the following parameters for cAMP: K m=1.5 mmol/l, J max=0.34 pmol s−1 cm−1, r (extracellular/intracellular amount at steady state)=0.91; for cGMP: K m=0.29 mmol/l, J max=0.31 pmol s−1 cm−1, r=0.55. Comparison of app. K i, cGMP with app. K i, PAH of ten substrates gave a linear relation with a ratio of 1.83±0.5. All prostanoids applied inhibited the contraluminal PAH transport; the prostaglandins E1, F1α, A1, B1, E2, F2α, D2, A2 and B2 with an app. K i, PAH between 0.08 and 0.18 mmol/l. The app. K i of the prostacyclins 6,15-diketo-13,14-dihydroxy-F1α (0.22 mmol/l) and Iloprost (0.17 mmol/l) as well as that of leukotrienes B4 (0.2 mmol/l) was in the same range, while the app. K i, PAH of the prostacyclins PGI2 (0.55 mmol/l), 6-keto-PGF1α (0.77 mmol/l), and 2,3-dinor-6-keto-PGF1α (0.57 mmol/l) as well as that of thromboxane Bin2 (0.36 mmol/l) was somewhat higher. None of these prostanoids inhibited contraluminal dicarboxylate transport and only PGB1, E2 and D2 inhibited contraluminal sulphate transport (app. $$K_{i,SO_4^{2--} } $$ 5.4, 11.0, 17.9 mmol/l respectively). Contraluminal influx of labelled PGE2 showed complex transport kinetics with a mixed K m=0.61 mmol/l and J max of 4.26 pmol s−1 cm−1. It was inhibited by probenecid, sulphate and indomethacin. Contraluminal influx of PGD2, however, was only inhibited by probenecid. The data indicate that cyclic nucleotides as well as prostanoids are transported by the contraluminal PAH transporter. For prostaglandin E2 a significant uptake through the sulphate transporter occurs in addition. The hypothesis that prostaglandins as well as 8-bromo and dibutyryl cyclic nucleotides permeate cell membranes by simple diffusion because of their lipid solubility must be considered with reservation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Corticosteroids ; Membrane transport ; Diffusion of corticosteroids ; Renal transport of p-aminohippurate and corticosteroids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using the stop-flow peritubular capillary microperfusion method contraluminal transport of corticosteroids was investigated (a) by determining the inhibitory potency (apparent K i values) of these compounds against p-aminohippurate (PAH), dicarboxylate (succinate) and sulphate transport and (b) by measuring the transport rate of radiolabelled corticosteroids and its inhibition by probenecid. Progesterone did not inhibit contraluminal PAH influx but its 17α- and 6β-hydroxy derivatives inhibited with an app. Ki of 0.36 mmol/l. Introduction of an OH group in position 21 of progesterone, to yield 11-deoxycorticosterone, augments the inhibitory potency considerably (app. K i, PAH of 0.07 mmol/l). Acetylation of the OH-group in position 21 of 11deoxycorticosterone, introduction of an additional hydroxy group in position 17 α to yield 11-deoxycortisol or in position 11 to yield corticosterone brings the app. K i, PAH back again into the range of 0.2–0.4 mmol/l. Acetylation of corticosterone or introduction of a third OH group to yield cortisol does not change the inhibitory potency, but, omission of the 21-OH group or addition of an OH group in the 6β position reduces or abolishes it. Cortisol and its derivatives prednisolone, dexamethasone and cortisone exert similar inhibitory potencies (app. K i, PAH 0.12–0.27 mmol/l). But again, omission of the 21-OH group in cortisone or addition of a 6β-OH group reduces or even abolishes the inhibitory potency against PAH transport. The interaction of corticosterone was not changed when 11β, 18-epoxy ring (aldosterone) was formed. On the other hand, the interaction was considerably augmented if the 11-hydroxy group was changed to an oxo group in 11-dehydrocorticosterone (app. K i, PAH 0.02 mmol/l). When the A ring of corticosterone is saturated and reduced to 3α, 11β-tetrahydrocorticosterone the inhibitory potency is not changed very much. But if more than four OH or oxo groups are on the pregnane skeleton or if the OH in position 21 is missing, the inhibitory potency decreases drastically (app. Ki, PAH 0.7–1.7 mmol/l). Introduction of a 21-ester sulphate into corticosterone, cortisol and cortisone does not change app. K i, PAH very much. Glucuronidation, however, reduces it (app. Ki, PAH ≈ 1.2 mmol/l). None of the tested corticosteroids interacts, in concentrations applicable, with dicarboxylate transport and only the sulphate esters interact with sulphate transport. Radiolabelled cortisol, d-aldosterone, 11-dehydrocorticosterone, and corticosterone are rapidly transported into proximal tubular cells. With the latter three compounds no sign of saturation and no transport inhibition with probenecid could be seen. Only with cortisol was a shift toward saturation observed. In addition, cortisol transport could be inhibited by probenecid. The data indicate that corticosteroids interact with the contraluminal renal PAH transporter, whereby hydroxylation in position 21 augments, and hydroxylation in the 6β or 3α, 17β position reduces interaction. However, as tested so far, simple diffusion seems to prevail when corticosteroids cross the cell membrane. Sulphation makes corticosteroids also a substrate for the sulphate transporter.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...