Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: brain ; RECEPTOR ; CELLS ; Germany ; NETWORKS ; SYSTEM ; TOOL ; DISTINCT ; PROTEIN ; PROTEINS ; TRANSDUCTION ; COMPLEX ; MESSENGER-RNA ; RAT ; signal transduction ; MEMBRANE ; SIGNAL-TRANSDUCTION ; mass spectrometry ; MASS-SPECTROMETRY ; CHROMATOGRAPHY ; PROTEOMIC ANALYSIS ; glutathione-S-transferase ; BINDING PROTEIN ; signaling ; molecular ; NEURONS ; analysis ; cilia ; ENGLAND ; XENOBIOTIC-METABOLIZING ENZYMES ; affinity chromatography ; calcium-calmodulin ; CHEMOSENSORY CILIA ; NUCLEOTIDE-GATED CHANNEL ; olfaction ; olfactory receptor neurons ; PHOSPHOLIPID-BINDING ; SENSORY NEURONS
    Abstract: The olfactory neuroepithelium represents a unique interface between the brain and the external environment. Olfactory function comprises a distinct set of molecular tasks: sensory signal transduction, cytoprotection and adult neurogenesis. A multitude of biochemical studies has revealed the central role of Ca2+ signaling in the function of olfactory receptor neurons (ORNs). We set out to establish Ca2+-dependent signaling networks in ORN cilia by proteomic analysis. We subjected a ciliary membrane preparation to Ca2+/calmodulin-affinity chromatography using mild detergent conditions in order to maintain functional protein complexes involved in olfactory Ca2+ signaling. Thus, calmodulin serves as a valuable tool to gain access to novel Ca2+-regulated protein complexes. Tandem mass spectrometry (nanoscale liquid-chromatography-electrospray injection) identified 123 distinct proteins. Ninety-seven proteins (79%) could be assigned to specific olfactory functions, including 32 to sensory signal transduction and 40 to cytoprotection. We point out novel perspectives for research on the Ca2+-signaling networks in the olfactory system of the rat. (C) 2007 IBRO. Published by Elsevier Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 18155848
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: RECEPTOR ; EXPRESSION ; Germany ; INFORMATION ; SUPPORT ; TOOL ; SITE ; PROTEIN ; PROTEINS ; TRANSDUCTION ; MECHANISM ; primary ; RAT ; mechanisms ; signal transduction ; MEMBRANE ; SIGNAL-TRANSDUCTION ; mass spectrometry ; MASS-SPECTROMETRY ; LOCALIZATION ; RECEPTORS ; FOOD ; protein expression ; PROTEOMIC ANALYSIS ; POLYACRYLAMIDE GELS ; NEURONS ; analysis ; TECHNOLOGY ; EPITHELIUM ; ENGLAND ; enzymatic ; XENOBIOTIC-METABOLIZING ENZYMES ; CHEMOSENSORY CILIA ; NUCLEOTIDE-GATED CHANNEL ; olfactory receptor neurons ; ODORANT RECEPTORS ; SENSITIVE ADENYLATE-CYCLASE ; sensory cilia
    Abstract: The cilia of mammalian olfactory receptor neurons (ORNs) represent the sensory interface that is exposed to the air within the nasal cavity. The cilia are the site where odorants bind to specific receptors and initiate olfactory transduction that leads to excitation of the neuron. This process involves a multitude of ciliary proteins that mediate chemoelectrical transduction, amplification, and adaptation of the primary sensory signal. Many of these proteins were initially identified by their enzymatic activities using a membrane protein preparation from olfactory cilia. This so-called "calcium-shock" preparation is a versatile tool for the exploration of protein expression, enzyme kinetics, regulatory mechanisms, and ciliary development. To support such studies, we present a first proteomic analysis of this membrane preparation. We subjected the cilia preparation to liquid chromatography-electrospray ionisation (LC-ESI-MS/MS) tandem mass spectrometry and identified 268 proteins, of which 49% are membrane proteins. A detailed analysis of their cellular and subcellular localization showed that the cilia preparation obtained by calcium shock not only is highly enriched in ORN proteins but also contains a significant amount of nonciliary material. Although our proteomic study does not identify the entire set of ciliary and nonciliary proteins, it provides the first estimate of the purity of the calcium-shock preparation and provides valuable biochemical information for further research
    Type of Publication: Journal article published
    PubMed ID: 18032372
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: molecular ; molecular biology ; aging ; RE ; MITOCHONDRIA ; MOLECULAR-BIOLOGY ; BIOLOGY ; ENGLAND
    Type of Publication: Meeting abstract published
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...