Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EXPRESSION  (16)
Collection
Keywords
  • 1
    Keywords: RECEPTOR ; CANCER ; EXPRESSION ; tumor ; carcinoma ; Germany ; human ; HYBRIDIZATION ; PROTEIN ; PROTEINS ; TISSUE ; TUMORS ; PATIENT ; FAMILY ; MARKER ; hormone ; IN-SITU ; PROGRESSION ; immunohistochemistry ; PATTERNS ; prostate cancer ; PROSTATE-CANCER ; MARKERS ; BENIGN ; GLYCATION END-PRODUCTS ; RAGE ; CARCINOMAS ; adenocarcinoma ; intraepithelial neoplasia ; NEURITE OUTGROWTH ; KAPPA-B ; CANCER PATIENTS ; HEALTHY ; prostate carcinoma ; OXIDANT STRESS ; SERUM ; in situ hybridization ; ELISA ; RE ; END ; TUMORIGENESIS ; HUMAN PROSTATE ; HYPERPLASIA ; TUMOR TISSUE ; MOLECULAR-GENETICS ; HUMAN-PROSTATE ; S100 PROTEINS ; EXPRESSION PATTERNS ; SERUM-LEVELS ; TUMOR DIFFERENTIATION
    Abstract: Purpose: S100 proteins comprise a family of calcium-modulated proteins that have recently been associated with epithelial tumors. We examined the expression of two members of this family, S10OA8 and S100A9, together with the S100 receptor RAGE (receptor for advanced glycation end products) in human prostate adenocarcinomas and in prostatic intraepithelial neoplasia. Experimental Design:Tissue specimens of 75 patients with organ-confined prostate cancer of different grades were analyzed by immunohistochemistry for expression of S10OA8, S100A9, and RAGE. In addition, in situ hybridization of S10OA8 and S10OA9 was done for 20 cases. An ELISA was applied to determine serum concentrations of S10OA9 in cancer patients compared with healthy controls or to patients with benign prostatic hyperplasia (BPH). Results: S100A8, S100A9, and RAGE were up-regulated in prostatic intraepithelial neoplasia and preferentially in high-grade adenocarcinomas, whereas benign tissue was negative or showed weak expression of the proteins. There was a high degree of overlap of S10OA8 and S10OA9 expression patterns and of S100A8 or S100A9 and RAGE, respectively. Frequently, a gradient within the tumor tissue with an increased expression toward the invaded stroma of the prostate was observed. S100A9 serum levels were significantly elevated in cancer patients compared with BPH patients or healthy individuals. Conclusion: Our data suggest that enhanced expression of S100A8, S100A9, and RAGE is an early event in prostate tumorigenesis and may contribute to development and progression or extension of prostate carcinomas. Furthermore, S100A9 in serum may serve as useful marker to discriminate between prostate cancer and BPH
    Type of Publication: Journal article published
    PubMed ID: 16033829
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; EXPRESSION ; GROWTH ; tumor ; IN-VIVO ; KINASE ; PATHWAYS ; GENE ; GENES ; PROTEIN ; MICE ; CARCINOGENESIS ; KERATINOCYTES ; SKIN ; PROTEIN-KINASE ; MAP KINASE ; LESIONS ; resistance ; INDUCED APOPTOSIS ; NUMBER ; epidermis ; GROWTH ARREST ; signaling ; RE ; TUMOR-SUPPRESSOR ; TUMORIGENESIS ; SIZE ; ERK ; function ; INVASIVENESS
    Abstract: Extracellular signal-regulated kinases (ERK) regulate cellular functions in response to a variety of external signals. However, the specific functions of individual ERK isoforms are largely unknown. Hence, we have investigated the specific function of ERK1 in skin homeostasis and tumorigenesis in ERK1 knockout mice. They spontaneously develop cutaneous lesions and hyperkeratosis with epidermis thickness. Skin hyperproliferation and inflammation induced by application of 12-O-tetradecanoylphorbol-13-acetate (TPA) is strongly reduced in mutant mice. ERKI-/- mice are resistant to development of skin papillomas induced by 7,12-dimethylbenz(a)anthracene (DMBA) and promoted by TPA. Tumor appearance was delayed, their formation was less frequent, and their number and size were reduced. Keratinocytes obtained from knockout mice showed reduced growth and resistance to apoptotic signals, accompanied by an impaired expression of genes implicated in growth control and invasiveness. These results highlight the importance of ERK1 in skin homeostasis and in the process of skin tumor development
    Type of Publication: Journal article published
    PubMed ID: 16510590
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: APOPTOSIS ; CANCER ; EXPRESSION ; GROWTH ; proliferation ; carcinoma ; CELL ; CELL-PROLIFERATION ; Germany ; LUNG ; DIAGNOSIS ; lung cancer ; LUNG-CANCER ; DEATH ; GENE ; GENES ; microarray ; PROTEIN ; cell line ; meningioma ; TISSUE ; LINES ; primary ; DOMAIN ; tumour ; SKIN ; BIOLOGY ; CELL-LINES ; MEMBER ; MOLECULAR-BIOLOGY ; SIGNAL ; PROGRESSION ; ASSAY ; INDUCED APOPTOSIS ; genetics ; COUNTRIES ; skin cancer ; CELL-LINE ; LINE ; ONCOGENE ; SUPERFAMILY ; EPITHELIAL-CELLS ; Jun ; PHENOTYPE ; STRATEGIES ; OVEREXPRESSION ; cell lines ; heredity ; LUNG-CARCINOMA ; SKIN-CANCER ; tumour suppressor gene ; ORIGIN ; molecular biology ; molecular ; ONCOLOGY ; non-small cell lung carcinoma ; SUPPRESSOR GENE ; cell proliferation ; SUPPRESSOR ; tumour suppressor ; NSCLC ; SET ; BREAST-CANCER CELLS ; DAL-1 ; ferm containing 3 ; GROWTH SUPPRESSION ; protein 4.1 ; PROTEIN 4.1B
    Abstract: Lung cancer including non-small cell lung carcinoma (NSCLC) represents a leading cause of cancer death in Western countries. Yet, understanding its pathobiology to improve early diagnosis and therapeutic strategies is still a major challenge of today's biomedical research. We analyzed a set of differentially regulated genes that were identifi. ed in skin cancer by a comprehensive microarray study, for their expression in NSCLC. We found that ferm domain containing protein 3 (FRMD3), a member of the protein 4.1 superfamily, is expressed in normal lung tissue but silenced in 54 out of 58 independent primary NSCLC tumours compared to patient-matched normal lung tissue. FRMD3 overexpression in different epithelial cell lines resulted in a decreased clonogenicity as measured by colony formation assay. Although cell attachment capabilities and cell proliferation rate remained unchanged, this phenotype was most likely owing to induced apoptosis. Our data identify FRMD3 as a novel putative tumour suppressor gene suggesting an important role in the origin and progression of lung cancer
    Type of Publication: Journal article published
    PubMed ID: 17260017
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; EXPRESSION ; TUMORS ; RECURRENCE ; REVEALS ; nucleolus ; MYB-BINDING PROTEIN
    Abstract: ABSTRACT: BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. METHODS: We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. RESULTS: One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFkappaB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. CONCLUSION: We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.
    Type of Publication: Journal article published
    PubMed ID: 22339894
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; SQUAMOUS-CELL CARCINOMA ; HEAD ; inflammation ; TUMOR-GROWTH ; BLOCKADE ; IMMUNE ; calprotectin ; ENDPRODUCTS RAGE ; S100A8/S100A9
    Abstract: Aberrant expression of the receptor for advanced glycation end products (RAGE) and its ligands, such as S100/Calgranulins, has been demonstrated in squamous cell carcinomas of the upper aerodigestive tract. However, the question whether RAGE signaling is causally linked with neoplastic transformation of keratinocytes in mucosal epithelia has not been addressed so far. We used the well-established mouse model of 4-nitroquinoline-1-oxide (4-NQO) induced tumorigenesis to investigate tumor development in control and RAGE-deficient (Rage(-/-)) animals. Although 4-NQO induced lesions of the tongue and the esophagus showed strong induction of the RAGE ligands S100a8 and S100a9, we did not observe any significant difference in tumor incidence or multiplicity between control and Rage(-/-) mice. Furthermore, detailed analysis of tumor sections by histological and immunohistochemical staining revealed no difference in either the size or histological architecture of dysplastic lesions, tumor cell proliferation, or the number of inflammatory immune cells in the tumor microenvironment. Finally, we detected induced transcript and protein levels of the Toll-like receptor 4 (Tlr4) in 4-NQO induced lesions, suggesting that signaling via the S100-Tlr4 axis may compensate for the lack of RAGE in early stages of tumor development. Our data demonstrate that RAGE is dispensable in the onset of genotoxic induced oral and esophageal squamous cell carcinoma and provide evidence for an alternative pathway of S100-Calgranulin signaling via Tlr4.
    Type of Publication: Journal article published
    PubMed ID: 23712426
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: CANCER ; EXPRESSION ; carcinoma ; PROTEINS ; MICE ; ACTIVATION ; murine ; RAGE ; ROLES ; PROMOTES
    Abstract: The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation. What's new? Liver cancers often overexpress a protein, S100A9, which functions as a danger signal during inflammation. It promotes inflammation and can drive the development of some tumors. In this paper, the authors sought to define the role of S100A9 in liver cancer. When they eliminated the protein from mice prone to inflammation-driven hepatocellular cancer, the liver tumors continued to develop unabated. Although it's highly upregulated in liver cancers, S100A9 isn't required for liver tumors to form, and wouldn't be useful as a therapeutic target.
    Type of Publication: Journal article published
    PubMed ID: 25331529
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: APOPTOSIS ; CELLS ; EXPRESSION ; Germany ; human ; SYSTEM ; DEATH ; SITE ; GENE ; GENE-EXPRESSION ; DRUG ; TISSUE ; NF-KAPPA-B ; LIGAND ; AP-1 ; primary ; INDUCTION ; T cells ; T-CELLS ; BINDING ; C-JUN ; SEQUENCE ; TRANSCRIPTION FACTORS ; ASSAY ; activation-induced cell death ; c-Fos ; CARCINOMA CELLS ; CD95 ligand ; CELL-DEATH ; CYCLOSPORINE-A ; FAS-LIGAND EXPRESSION ; INDUCED APOPTOSIS ; MOBILITY ; PROMOTER ; UP-REGULATION
    Abstract: The CD95 (APO-1/Fas) system plays a major role in induction of apoptosis in lymphoid and nonlymphoid tissues. The CD95 (APO- 1/Fas) ligand (CD95L) is induced in response to a variety of signals including TCR/CD3 stimulation or application of chemotherapeutic drugs. Here we report that an AP-1 site located in the 5' untranslated region of the CD95L gene is required for TCR/CD3-mediated induction of the human CD95L promoter. Electrophoretic mobility shift assays using nuclear extracts of Jurkat T cells as well as TCR/CD3-restimulated primary human T cells demonstrated specific binding of AP-1, predominantly composed of c-Jun and FosB, to this sequence. Ectopic expression of transdominant negative Jun mutants strongly reduced CD95L promoter activity and activation-induced cell death (AICD), confirming the functional significance of FosB/c-Jun binding. Thus, our results demonstrate an important novel function for FosB dimerized with c-Jun in TCR/CD3- mediated AICD in human T cells
    Type of Publication: Journal article published
    PubMed ID: 12618758
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; CELLS ; EXPRESSION ; GROWTH ; carcinoma ; GENE ; GENE-EXPRESSION ; GENES ; microarray ; PROTEIN ; SAMPLE ; SAMPLES ; murine ; AP-1 ; CARCINOGENESIS ; tumour ; SKIN ; MOUSE ; TRANSCRIPTION FACTORS ; IDENTIFICATION ; PROGRESSION ; gene expression ; PROMOTERS ; skin carcinogenesis ; METASTASIS ; SSH ; PCR ; TRANSFORMATION ; EPITHELIAL-CELLS ; squamous cell carcinoma ; FRAGMENTS ; MULTISTAGE CARCINOGENESIS ; real-time PCR ; expression profiling ; PHORBOL ESTER ; CDNA MICROARRAY ; NMRI MOUSE SKIN ; tumour promoter
    Abstract: Malignant transformation of mouse skin by chemical carcinogens and tumour promoters, such as the phorbol ester 12-O- tetradecanoylphorbol-13-acetate (TPA), is a multi-stage process that leads to squamous cell carcinoma (SCC) formation. In an effort to identify turnour-associated genes, we studied the influence of short-term TPA-treatment on the gene expression profile of murine skin. A comprehensive microarray with some 5,000 murine gene specific cDNA fragments was established and hybridised with pooled RNA derived from control and TPA-treated dorsal skin samples. Of these genes, 54 were up- and 35 were down-regulated upon TPA application. Additionally, we performed suppression subtractive hybridisation (SSH) with respective RNA pools to generate and analyse a cDNA library enriched for TPA- inducible genes. Expression data of selected genes were confirmed by quantitative real-time PCR and Northern blot analysis. Comparison of microarray and SSH data revealed that 26% of up-regulated genes identified by expression profiling matched with those present in the SSH library. Besides numerous known genes, we identified a large set of unknown cDNAs that represent previously unrecognised TPA-regulated genes in murine skin with potential function in tumour promotion. Additionally, some TPA-induced genes, such as SprrIA, Saa3, junB, II4ralpha, Gp38, RalGDS and Slpi exhibit high basal level in advanced stages of skin carcinogenesis, suggesting that at least a subgroup of the identified TPA-regulated genes may contribute to tumour progression and metastasis. (C) 2003 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 12640676
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CELLS ; EXPRESSION ; CELL ; COMBINATION ; Germany ; human ; COHORT ; POPULATION ; RISK ; GENE ; PROTEIN ; SAMPLE ; SAMPLES ; DNA ; BINDING ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; single nucleotide polymorphism ; VARIANTS ; HUMANS ; ASSAY ; PROMOTER ; SNP ; OBESITY ; SINGLE ; VARIANT ; SINGLE NUCLEOTIDE POLYMORPHISMS ; FUNCTIONAL-CHARACTERIZATION ; HAPLOTYPES ; INSULIN-RESISTANCE ; metabolic syndrome ; USA ; REPLACEMENT ; Adiponectin ; STATE ; Luciferase reporter ; PLASMA ADIPONECTIN ; TYPE-2 DIABETIC-PATIENTS ; APM1 GENE ; HYPOADIPONECTINEMIA
    Abstract: OBJECTIVE-Adiponectin (APM1, ACDC) is an adipocyte-derived protein with downregulated expression in obesity and insulin-resistant states. Several potentially regulatory single nucleotide polymorphisms (SNPs) within the APM1 gene promoter region have been associated with circulating adiponectin levels. None of them have been functionally characterized in adiponectin-expressing cells. Hence, we investigated three SNPs (rs16861194, rs17300539, and rs266729) for their influence on adiponectin promoter activity and their association with circulating adiponectin levels. RESEARCH DESIGN AND METHODS-Basal and rosiglitazone-induced promoter activity of different SNP combinations (haplotypes) was analyzed in 3T3-L1 adipocytes using luciferase reporter gene assays and DNA binding studies comparing all possible APM1 haplotypes. This functional approach was complemented with analysis of epidemiological population-based data of 1,692 participants of the MONICA/KORA S123 cohort and 696 participants from the KORA S4 cohort for SNP and haplotype association with circulating adiponectin levels. RESULTS-Major to minor allele replacements of the three SNPs revealed significant effects on promoter activity in luciferase assays. Particularly, a minor variant in rs16861194 resulted in reduced basal and rosiglitazone-induced promoter activity and hypoadiponectinemia in the epidemiological datasets. The haplotype with the minor allele in all three SNPs showed a complete loss of promoter activity, and no subject carried this haplotype in either of the epidemiological samples (combined P value for statistically significant difference from a random sample was 0.006). CONCLUSIONS-Our results clearly demonstrate that promoter variants associated with hypoadiponectinemia in humans substantially affect adiponectin promoter activity in adipocytes. Our combination of functional experiments with epidemiological data overcomes the drawback of each approach alone. Diabetes 58-984-991, 2009
    Type of Publication: Journal article published
    PubMed ID: 19074982
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: CANCER ; CELLS ; EXPRESSION ; GROWTH ; SURVIVAL ; carcinoma ; CELL ; Germany ; human ; MODEL ; PATHWAY ; PATHWAYS ; NETWORK ; SUPPORT ; DEATH ; HEPATOCELLULAR-CARCINOMA ; liver ; GENE ; GENES ; PROTEIN ; PROTEINS ; TISSUE ; NF-KAPPA-B ; ACTIVATION ; murine ; CARCINOGENESIS ; INDUCTION ; SIGNAL ; TARGET ; MOUSE ; hepatocarcinogenesis ; hepatocellular carcinoma ; PROGRESSION ; CELL-DEATH ; CELL-LINE ; SIGNALING PATHWAY ; SIGNALING PATHWAYS ; RAGE ; MOUSE MODEL ; KAPPA-B ; OXIDATIVE STRESS ; expression profiling ; inflammation ; signaling ; MOLECULAR-MECHANISMS ; cell death ; CANCER PROGRESSION ; USA ; GROWTH-CONTROL ; SUPPRESSOR-CELLS ; nuclear factor kappa B ; COEXPRESSION ; COMPENSATORY PROLIFERATION
    Abstract: The nuclear factor-kappaB (NF-kappa B) signaling pathway has been recently shown to participate in inflammation-induced cancer progression. Here, we describe a detailed analysis of the NF-kappa B-dependent gene regulatory network in the well-established Mdr2 knockout mouse model of inflammation-associated liver carcinogenesis. Expression profiling of NF-kappa B-deficient and NF-kappa B-proficient hepatocellular carcinoma (HCC) revealed a comprehensive list of known and novel putative NF-kappa B target genes, including S100a8 and S100a9. We detected increased co-expression of S100A8 and S100A9 proteins in mouse HCC cells, in human HCC tissue, and in the HCC cell line Hep3B on ectopic RelA expression. Finally, we found a synergistic function for S100A8 and S100A9 in Hep3B cells resulting in a significant induction of reactive oxygen species (ROS), accompanied by enhanced cell survival. Conclusion: We identified S100A8 and S100A9 as novel NF-kappa B target genes in HCC cells during inflammation-associated liver carcinogenesis and provide experimental evidence that increased co-expression of both proteins supports malignant progression by activation of ROS-dependent signaling pathways and protection from cell death. (HEPATOLOGY 2009;50: 1251-1262.)
    Type of Publication: Journal article published
    PubMed ID: 19670424
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...