Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: EXPRESSION ; MELANOMA ; GLIOMAS ; HUMAN CANCER ; telomere length ; ASTROCYTIC TUMORS ; GIANT-CELL GLIOBLASTOMAS ; ATRX ; OCCUR
    Abstract: Hot spot mutations in the promoter region of telomerase reverse transcriptase (TERT) have recently been described in several human tumor entities. These mutations result in an upregulation of the telomerase complex activity and thus constitute a relevant mechanism for immortalization of tumor cells. Knowledge of the TERT promoter status in tumors is likely to be of interest for molecular classification and as a potential target for therapy. We, therefore, performed a systematic analysis of TERT promoter mutations in 1,515 tumors of the human nervous system and its coverings including 373 pediatric and 1,142 adult patients. We detected a total of 327 mutations. TERT promoter mutations were exceedingly rare in tumors typically encountered in pediatric patients. In entities typically encountered in adult patients TERT promoter mutations were strongly associated with older age (p 〈 0.0001). Highest mutation frequencies were detected in gliosarcomas (81 %), oligodendrogliomas (78 %), oligoastrocytomas (58 %), primary glioblastomas (54 %), and solitary fibrous tumors (50 %). Related to other molecular alterations, TERT promoter mutations were strongly associated with 1p/19q loss (p 〈 0.0001), but inversely associated with loss of ATRX expression (p 〈 0.0001) and IDH1/IDH2 mutations (p 〈 0.0001). TERT promoter mutations are typically found in adult patients and occur in a highly tumor type-associated distribution.
    Type of Publication: Journal article published
    PubMed ID: 24154961
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: EXPRESSION ; DISTINCT ; DIFFERENTIATION ; MUTATIONS ; DE-NOVO ; METHYLATION ; GENETIC PROFILES ; HOXA CLUSTER ; MOLECULAR SUBGROUPS ; CROSS-SPECIES GENOMICS
    Abstract: Medulloblastoma is a malignant embryonal brain tumor with highly variable outcome. In order to study the biology of this tumor and to perform preclinical treatment studies, a lot of effort has been put into the generation of appropriate mouse models. The usage of these models, however, has become debatable with the advances in human medulloblastoma subgrouping. This study brings together multiple relevant mouse models and matches genetic alterations and gene expression data of 140 murine tumors with 423 human medulloblastomas in a global way. Using AGDEX analysis and k-means clustering, we show that the Blbp-cre::Ctnnb1(ex3)(Fl/+)Trp53 (Fl/Fl) mouse model fits well to human WNT medulloblastoma, and that, among various Myc- or Mycn-based mouse medulloblastomas, tumors in Glt1-tTA::TRE-MYCN/Luc mice proved to be most specific for human group 3 medulloblastoma. None of the analyzed models displayed a significant match to group 4 tumors. Intriguingly, mice with Ptch1 or Smo mutations selectively modeled SHH medulloblastomas of adulthood, although such mutations occur in all human age groups. We therefore suggest that the infantile or adult gene expression pattern of SHH MBs are not solely determined by specific mutations. This is supported by the observation that human medulloblastomas with PTCH1 mutations displayed more similarities to PTCH1 wild-type tumors of the same age group than to PTCH1-mutated tumors of the other age group. Together, we provide novel insights into previously unrecognized specificity of distinct models and suggest these findings as a solid basis to choose the appropriate model for preclinical studies on medulloblastoma.
    Type of Publication: Journal article published
    PubMed ID: 24871706
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RECEPTOR ; CANCER ; EXPRESSION ; INHIBITION ; PATHWAY ; MIGRATION ; HEPATOCYTE GROWTH-FACTOR ; C-MET ; PEDIATRIC MEDULLOBLASTOMA ; GENETIC PROFILES
    Abstract: Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here we report that the analysis of several large non-overlapping cohorts of medulloblastoma patients reveal MET kinase as a marker of sonic hedgehog (SHH) driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that SHH medulloblastoma patients may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma.
    Type of Publication: Journal article published
    PubMed ID: 25391241
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; tumor ; DISTINCT ; GENE-EXPRESSION ; TUMORS ; FEATURES ; clinical trials ; medulloblastoma ; MOLECULAR CLASSIFICATION ; SUBGROUPS ; MYC ; Molecular subgroup ; NanoString
    Abstract: The diagnosis of medulloblastoma likely encompasses several distinct entities, with recent evidence for the existence of at least four unique molecular subgroups that exhibit distinct genetic, transcriptional, demographic, and clinical features. Assignment of molecular subgroup through routine profiling of high-quality RNA on expression microarrays is likely impractical in the clinical setting. The planning and execution of medulloblastoma clinical trials that stratify by subgroup, or which are targeted to a specific subgroup requires technologies that can be economically, rapidly, reliably, and reproducibly applied to formalin-fixed paraffin embedded (FFPE) specimens. In the current study, we have developed an assay that accurately measures the expression level of 22 medulloblastoma subgroup-specific signature genes (CodeSet) using nanoString nCounter Technology. Comparison of the nanoString assay with Affymetrix expression array data on a training series of 101 medulloblastomas of known subgroup demonstrated a high concordance (Pearson correlation r = 0.86). The assay was validated on a second set of 130 non-overlapping medulloblastomas of known subgroup, correctly assigning 98% (127/130) of tumors to the appropriate subgroup. Reproducibility was demonstrated by repeating the assay in three independent laboratories in Canada, the United States, and Switzerland. Finally, the nanoString assay could confidently predict subgroup in 88% of recent FFPE cases, of which 100% had accurate subgroup assignment. We present an assay based on nanoString technology that is capable of rapidly, reliably, and reproducibly assigning clinical FFPE medulloblastoma samples to their molecular subgroup, and which is highly suited for future medulloblastoma clinical trials.
    Type of Publication: Journal article published
    PubMed ID: 22057785
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; GENE ; DIFFERENTIATION ; IDENTIFICATION ; EMBRYONIC STEM-CELLS ; HYPERMETHYLATION ; SUPPRESSOR ; methylome ; CANCER GENOME ; CPG ISLAND SHORES
    Abstract: Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.
    Type of Publication: Journal article published
    PubMed ID: 24847876
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: EXPRESSION ; ASTROCYTOMAS ; temozolomide ; HIGH-GRADE GLIOMAS ; SUBGROUPS ; IDH1 ; MGMT PROMOTER METHYLATION ; INTRINSIC PONTINE GLIOMA ; ACTIVATING ACVR1 MUTATIONS ; GENOMIC LANDSCAPE
    Abstract: Pediatric glioblastoma (pedGBM) is amongst the most common malignant brain tumors of childhood and carries a dismal prognosis. In contrast to adult GBM, few molecular prognostic markers for the pediatric counterpart have been established. We, therefore, investigated the prognostic significance of genomic and epigenetic alterations through molecular analysis of 202 pedGBM (1-18 years) with comprehensive clinical annotation. Routinely prepared formalin-fixed paraffin-embedded tumor samples were assessed for genome-wide DNA methylation profiles, with known candidate genes screened for alterations via direct sequencing or FISH. Unexpectedly, a subset of histologically diagnosed GBM (n = 40, 20 %) displayed methylation profiles similar to those of either low-grade gliomas or pleomorphic xanthoastrocytomas (PXA). These tumors showed a markedly better prognosis, with molecularly PXA-like tumors frequently harboring BRAF V600E mutations and 9p21 (CDKN2A) homozygous deletion. The remaining 162 tumors with pedGBM molecular signatures comprised four subgroups: H3.3 G34-mutant (15 %), H3.3/H3.1 K27-mutant (43 %), IDH1-mutant (6 %), and H3/IDH wild-type (wt) GBM (36 %). These subgroups were associated with specific cytogenetic aberrations, MGMT methylation patterns and clinical outcomes. Analysis of follow-up data identified a set of biomarkers feasible for use in risk stratification: pedGBM with any oncogene amplification and/or K27M mutation (n = 124) represents a particularly unfavorable group, with 3-year overall survival (OS) of 5 %, whereas tumors without these markers (n = 38) define a more favorable group (3-year OS similar to 70 %).Combined with the lower grade-like lesions, almost 40 % of pedGBM cases had distinct molecular features associated with a more favorable outcome. This refined prognostication method for pedGBM using a molecular risk algorithm may allow for improved therapeutic choices and better planning of clinical trial stratification for this otherwise devastating disease.
    Type of Publication: Journal article published
    PubMed ID: 25752754
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: EXPRESSION ; tumor ; INHIBITION ; PATHWAY ; TUMORS ; prognosis ; CLUSTER ; medulloblastoma ; SUBTYPES ; PROFILES ; hsa-miR-182 ; Metastatic dissemination ; POLYCISTRON ; SHH pathway
    Abstract: The contribution of microRNAs to the initiation, progression, and metastasis of medulloblastoma (MB) remains poorly understood. Metastatic dissemination at diagnosis is present in about 30% of MB patients, and is associated with a dismal prognosis. Using microRNA expression profiling, we demonstrate that the retinal miR-183-96-182 cluster on chromosome 7q32 is highly overexpressed in non-sonic hedgehog MBs (non-SHH-MBs). Expression of miR-182 and miR-183 is associated with cerebellar midline localization, and miR-182 is significantly overexpressed in metastatic MB as compared to non-metastatic tumors. Overexpression of miR-182 in non-SHH-MB increases and knockdown of miR-182 decreases cell migration in vitro. Xenografts overexpressing miR-182 invaded adjacent normal tissue and spread to the leptomeninges, phenotypically reminiscent of clinically highly aggressive large cell anaplastic MB. Hence, our study provides strong in vitro and in vivo evidence that miR-182 contributes to leptomeningeal metastatic dissemination in non-SHH-MB. We therefore reason that targeted inhibition of miR-182 may prevent leptomeningeal spread in patients with non-SHH-MB.
    Type of Publication: Journal article published
    PubMed ID: 22134538
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...