Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GENE-EXPRESSION  (8)
Keywords
  • 1
    Keywords: CELLS ; GROWTH-FACTOR ; proliferation ; GENE-EXPRESSION ; SKIN ; C-JUN ; MAP KINASES ; MORPHOGENESIS ; SIGNAL-TRANSDUCTION PATHWAY ; EPIDERMAL-KERATINOCYTES
    Abstract: Previous studies demonstrated that fibroblast-derived and JUN-dependent soluble factors have a crucial role on keratinocyte proliferation and differentiation during cutaneous wound healing. Furthermore, mice with a deficiency in Jun N-terminal kinases (JNKs), JNK1 or JNK2, showed impaired skin development and delayed wound closure. To decipher the role of dermal JNK in keratinocyte behavior during these processes, we used a heterologous coculture model combining primary human keratinocytes and murine fibroblasts. Although cocultured JNK1/JNK2-deficient fibroblasts did not affect keratinocyte proliferation, temporal monitoring of the transcriptome of differentiating keratinocytes revealed that efficient keratinocyte differentiation not only requires the support by fibroblast-derived soluble factors, but is also critically dependent on JNK1 and JNK2 signaling in these cells. Moreover, we showed that the repertoire of fibroblast transcripts encoding secreted proteins is severely disarranged upon loss of JNK under the coculture conditions applied. Finally, our data demonstrate that efficient keratinocyte terminal differentiation requires constant presence of JNK-dependent and fibroblast-derived soluble factors. Taken together, our results imply that mesenchymal JNK has a pivotal role in the paracrine cross talk between dermal fibroblasts and epidermal keratinocytes during wound healing.
    Type of Publication: Journal article published
    PubMed ID: 24335928
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: APOPTOSIS ; CELLS ; EXPRESSION ; Germany ; human ; SYSTEM ; DEATH ; SITE ; GENE ; GENE-EXPRESSION ; DRUG ; TISSUE ; NF-KAPPA-B ; LIGAND ; AP-1 ; primary ; INDUCTION ; T cells ; T-CELLS ; BINDING ; C-JUN ; SEQUENCE ; TRANSCRIPTION FACTORS ; ASSAY ; activation-induced cell death ; c-Fos ; CARCINOMA CELLS ; CD95 ligand ; CELL-DEATH ; CYCLOSPORINE-A ; FAS-LIGAND EXPRESSION ; INDUCED APOPTOSIS ; MOBILITY ; PROMOTER ; UP-REGULATION
    Abstract: The CD95 (APO-1/Fas) system plays a major role in induction of apoptosis in lymphoid and nonlymphoid tissues. The CD95 (APO- 1/Fas) ligand (CD95L) is induced in response to a variety of signals including TCR/CD3 stimulation or application of chemotherapeutic drugs. Here we report that an AP-1 site located in the 5' untranslated region of the CD95L gene is required for TCR/CD3-mediated induction of the human CD95L promoter. Electrophoretic mobility shift assays using nuclear extracts of Jurkat T cells as well as TCR/CD3-restimulated primary human T cells demonstrated specific binding of AP-1, predominantly composed of c-Jun and FosB, to this sequence. Ectopic expression of transdominant negative Jun mutants strongly reduced CD95L promoter activity and activation-induced cell death (AICD), confirming the functional significance of FosB/c-Jun binding. Thus, our results demonstrate an important novel function for FosB dimerized with c-Jun in TCR/CD3- mediated AICD in human T cells
    Type of Publication: Journal article published
    PubMed ID: 12618758
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; CELLS ; EXPRESSION ; GROWTH ; carcinoma ; GENE ; GENE-EXPRESSION ; GENES ; microarray ; PROTEIN ; SAMPLE ; SAMPLES ; murine ; AP-1 ; CARCINOGENESIS ; tumour ; SKIN ; MOUSE ; TRANSCRIPTION FACTORS ; IDENTIFICATION ; PROGRESSION ; gene expression ; PROMOTERS ; skin carcinogenesis ; METASTASIS ; SSH ; PCR ; TRANSFORMATION ; EPITHELIAL-CELLS ; squamous cell carcinoma ; FRAGMENTS ; MULTISTAGE CARCINOGENESIS ; real-time PCR ; expression profiling ; PHORBOL ESTER ; CDNA MICROARRAY ; NMRI MOUSE SKIN ; tumour promoter
    Abstract: Malignant transformation of mouse skin by chemical carcinogens and tumour promoters, such as the phorbol ester 12-O- tetradecanoylphorbol-13-acetate (TPA), is a multi-stage process that leads to squamous cell carcinoma (SCC) formation. In an effort to identify turnour-associated genes, we studied the influence of short-term TPA-treatment on the gene expression profile of murine skin. A comprehensive microarray with some 5,000 murine gene specific cDNA fragments was established and hybridised with pooled RNA derived from control and TPA-treated dorsal skin samples. Of these genes, 54 were up- and 35 were down-regulated upon TPA application. Additionally, we performed suppression subtractive hybridisation (SSH) with respective RNA pools to generate and analyse a cDNA library enriched for TPA- inducible genes. Expression data of selected genes were confirmed by quantitative real-time PCR and Northern blot analysis. Comparison of microarray and SSH data revealed that 26% of up-regulated genes identified by expression profiling matched with those present in the SSH library. Besides numerous known genes, we identified a large set of unknown cDNAs that represent previously unrecognised TPA-regulated genes in murine skin with potential function in tumour promotion. Additionally, some TPA-induced genes, such as SprrIA, Saa3, junB, II4ralpha, Gp38, RalGDS and Slpi exhibit high basal level in advanced stages of skin carcinogenesis, suggesting that at least a subgroup of the identified TPA-regulated genes may contribute to tumour progression and metastasis. (C) 2003 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 12640676
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: ENDOTHELIAL GROWTH-FACTOR ; GENE-EXPRESSION ; BREAST-CANCER ; AMPLIFICATION ; COMPARATIVE GENOMIC HYBRIDIZATION ; TUMOR PROGRESSION ; COLORECTAL-CANCER ; PHASE-II TRIAL ; MOLECULAR CLASSIFICATION ; BEVACIZUMAB
    Abstract: Death rates from hepatocellular carcinoma (HCC) are steadily increasing, yet therapeutic options for advanced HCC are limited. We identify a subset of mouse and human HCCs harboring VEGFA genomic amplification, displaying distinct biologic characteristics. Unlike common tumor amplifications, this one seems to work via heterotypic paracrine interactions; stromal VEGF receptors (VEGFR), responding to tumor VEGF-A, produce hepatocyte growth factor (HGF) that reciprocally affects tumor cells. VEGF-A inhibition results in HGF downregulation and reduced proliferation, specifically in amplicon-positive mouse HCCs. Sorafenib-the first-line drug in advanced HCC-targets multiple kinases, including VEGFRs, but has only an overall mild beneficial effect. We found that VEGFA amplification specifies mouse and human HCCs that are distinctly sensitive to sorafenib. FISH analysis of a retrospective patient cohort showed markedly improved survival of sorafenib-treated patients with VEGFA-amplified HCCs, suggesting that VEGFA amplification is a potential biomarker for HCC response to VEGF-A-blocking drugs. SIGNIFICANCE: Using a mouse model of inflammation-driven cancer, we identified a subclass of HCC carrying VEGFA amplification, which is particularly sensitive to VEGF-A inhibition. We found that a similar amplification in human HCC identifies patients who favorably responded to sorafenib-the first-line treatment of advanced HCC-which has an overall moderate therapeutic efficacy. Cancer Discov; 4(6); 730-43. (c)2014 AACR. See related commentary by Luo and Feng, p. 640 This article is highlighted in the In This Issue feature, p. 621.
    Type of Publication: Journal article published
    PubMed ID: 24687604
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: APOPTOSIS ; CANCER ; EXPRESSION ; CELL ; Germany ; human ; IN-VIVO ; KINASE ; MODEL ; VIVO ; GENE ; GENE-EXPRESSION ; GENES ; HYBRIDIZATION ; PROTEIN ; RNA ; METABOLISM ; cell line ; LINES ; MICE ; DNA ; CARCINOGENESIS ; animals ; KERATINOCYTES ; SKIN ; BIOLOGY ; cell cycle ; CELL-CYCLE ; CELL-LINES ; CYCLE ; DOWN-REGULATION ; MOUSE ; IDENTIFICATION ; IN-SITU ; PROGRESSION ; MALIGNANCIES ; gene expression ; EXPRESSION ANALYSIS ; HUMANS ; DESIGN ; UP-REGULATION ; MOUSE SKIN ; skin carcinogenesis ; genetics ; statistics ; CELL-LINE ; LINE ; ADHESION ; CELL-ADHESION ; ONCOGENE ; INVOLVEMENT ; RT-PCR ; KINETICS ; cell lines ; heredity ; SKIN-CANCER ; HUMAN SKIN ; in situ hybridization ; MALIGNANCY ; ONCOLOGY ; ANNOTATION ; ENHANCED EXPRESSION ; cell adhesion ; LEVEL ; analysis ; CANCER DEVELOPMENT ; cluster analysis ; S100A8 ; MAP ; in vivo ; RELEVANCE ; Oligonucleotide Array Sequence Analysis ; SPECIMENS ; animal ; Carcinoma,Squamous Cell ; SQUAMOUS-CELL ; SET ; animal model ; molecular genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Skin Neoplasms ; Cell Line,Tumor ; cytology ; DNA,Complementary ; epithelial skin cancer ; Gene Expression Regulation,Neoplastic ; HUMAN-SKIN ; Microscopy,Fluorescence ; Protein-Serine-Threonine Kinases ; RNA,Messenger ; tumour specimen
    Abstract: Chemically induced mouse skin carcinogenesis represents the most extensively utilized animal model to unravel the multistage nature of tumour development and to design novel therapeutic concepts of human epithelial neoplasia. We combined this tumour model with comprehensive gene expression analysis and could identify a large set of novel tumour-associated genes that have not been associated with epithelial skin cancer development yet. Expression data of selected genes were confirmed by semiquantitative and quantitative RT-PCR as well as in situ hybridization and immunofluorescence analysis on mouse tumour sections. Enhanced expression of genes identified in our screen was also demonstrated in mouse keratinocyte cell lines that form tumours in vivo. Self-organizing map clustering was performed to identify different kinetics of gene expression and coregulation during skin cancer progression. Detailed analysis of differential expressed genes according to their functional annotation confirmed the involvement of several biological processes, such as regulation of cell cycle, apoptosis, extracellular proteolysis and cell adhesion, during skin malignancy. Finally, we detected high transcript levels of ANXA1, LCN2 and S100A8 as well as reduced levels for NDR2 protein in human skin tumour specimens demonstrating that tumour-associated genes identified in the chemically induced tumour model might be of great relevance for the understanding of human epithelial malignancies as well
    Type of Publication: Journal article published
    PubMed ID: 16247483
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: brain ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; INHIBITOR ; INVASION ; proliferation ; tumor ; CELL ; CELL-PROLIFERATION ; Germany ; human ; IN-VIVO ; MODEL ; VITRO ; VIVO ; GENE-EXPRESSION ; PROTEIN ; transcription ; cell line ; TISSUE ; TUMORS ; LINES ; MICE ; PATIENT ; TISSUES ; KERATINOCYTES ; SKIN ; T cell ; T-CELL ; CELL-LINES ; SIGNAL ; MOUSE ; STAGE ; UP-REGULATION ; MEMBRANE ; skin carcinogenesis ; CELL-LINE ; LINE ; ADHESION ; MIGRATION ; MORPHOLOGY ; INVOLVEMENT ; MOUSE MODEL ; TRANSLOCATION ; beta-catenin ; ECTODOMAIN ; cell lines ; SUBSTRATE-SPECIFICITY ; MATRIX ; E-cadherin ; ONCOLOGY ; RE ; CAPACITY ; keratinocyte ; cell proliferation ; LEVEL ; NUCLEAR ; USA ; TISSUE INHIBITOR ; cancer research ; in vivo ; PLASMID ; DEFECT ; PROMOTES ; matrix metalloproteinase ; METALLOPROTEINASE ; ectodomain shedding ; MATRIX-METALLOPROTEINASE ; OVARIAN-CARCINOMA ; GROWTH-CONTROL ; EXTRACELLULAR CLEAVAGE ; HUMAN TISSUE KALLIKREINS ; PROTEINASE-ACTIVATED RECEPTORS ; SERINE PROTEINASE ; SERUM BIOMARKER
    Abstract: Recently, we described phorbol ester-induced expression of the brain and skin serine proteinase Bssp/kallikrein 6 (Klk6), the mouse orthologue of human KLK6, in mouse back skin and in advanced tumor stages of a well-established multistage tumor model. Here, we show KLK6 up-regulation in squamous skin tumors of human patients and in tumors of other epithelial tissues. Ectopic Klk6 expression in mouse keratinocyte cell lines induces a spindle-like morphology associated with accelerated proliferation, migration, and invasion capacity. We found reduced E-cadherin protein levels in the cell membrane and nuclear translocation of beta-catenin in Klk6-expressing mouse keratinocytes and human HEK293 cells transfected with a KLK6 expression plasmid. Additionally, HEK293 cells exhibited induced T-cell factor-dependent transcription and impaired cell-cell adhesion in the presence of KLK6, which was accompanied by induced E-cadherin ectodomain shedding. Interestingly, tissue inhibitor of metalloproteinase (TIMP)-l and TIMP-3 interfere with KLK6-induced F-cadherin ectodomain shedding and rescue the cell-cell adhesion defect in vitro, suggesting the involvement of matrix metalloproteinase and/or a disintegrin and metalloproteinase (ADAM) proteolytic activity. In line with this assumption, we found increased levels of the mature 62-kDa ADAM10 proteinase in cells expressing ectopic KLK6 compared with mock controls. Finally, enhanced epidermal keratinocyte proliferation and migration in concert with decreased E-cadherin protein levels are confirmed in an in vivo Klk6 transgenic mouse model
    Type of Publication: Journal article published
    PubMed ID: 17804733
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: GENE-EXPRESSION ; NF-KAPPA-B ; CUTTING EDGE ; T-CELLS ; REGULATORY ELEMENTS ; TRANSCRIPTION FACTOR GATA-3 ; CHEMOKINE RECEPTORS ; LINEAGE COMMITMENT ; TH2-SPECIFIC EXPRESSION ; C-MAF
    Abstract: Naive CD4+ T cells differentiate into effector T helper 1 (Th1) or Th2 cells, which are classified by their specific set of cytokines. Here we demonstrate that loss of JunB in in vitro polarized Th2 cells led to a dysregulated expression of the Th2-specific cytokines IL-4 and IL-5. These cells produce IFN-gamma and express T-bet, the key regulator of Th1 cells. In line with the essential role of Th2 cells in the pathogenesis of allergic asthma, mice with JunB-deficient CD4+ T cells exhibited an impaired allergen-induced airway inflammation. This study demonstrates novel functions of JunB in the development of Th2 effector cells, for a normal Th2 cytokine expression pattern and for a complete Th2-dependent immune response in mice.
    Type of Publication: Journal article published
    PubMed ID: 12456639
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; CELLS ; EXPRESSION ; tumor ; TUMOR-CELLS ; CELL ; Germany ; human ; GENE-EXPRESSION ; PROTEIN ; PROTEINS ; NF-KAPPA-B ; TUMOR-NECROSIS-FACTOR ; AP-1 ; CARCINOGENESIS ; COMPARATIVE GENOMIC HYBRIDIZATION ; SQUAMOUS-CELL CARCINOMA ; GLYCATION END-PRODUCTS ; RAGE ; NF-kappa B ; TUMOR CELLS ; inflammation ; CALCIUM-BINDING PROTEINS ; CALCIUM-BINDING PROTEIN ; HUMAN CANCER ; LEVEL ; TUMOR-CELL ; MICROVASCULAR ENDOTHELIAL-CELLS ; chronic inflammation ; CALCIUM-BINDING ; function ; S100 ; HUMAN CANCERS ; CANCERS ; MALIGNANCY-ASSOCIATED REGIONS ; TRANSENDOTHELIAL MIGRATION
    Abstract: Calprotectin (S100A8/A9), a heterodimer of the two calcium-binding proteins S100A8 and S100A9, was originally discovered as immunogenic protein expressed and secreted by neutrophils. Subsequently, it has emerged as important pro-inflammatory mediator in acute and chronic inflammation. More recently, increased S100A8 and S100A9 levels were also detected in various human cancers, presenting abundant expression in neoplastic tumor cells as well as infiltrating immune cells. Although, many possible functions have been proposed for S100A8/A9, its biological role still remains to be defined. Altogether, its expression and potential cytokine-like function in inflammation and in cancer suggests that S100A8/A9 may play a key role in inflammation-associated cancer. (c) 2006 Elsevier Inc. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 16846592
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...