Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

  • Capsid/*metabolism  (1)
  • Histone Deacetylases/genetics/*physiology  (1)
  • (S. sanguis)
  • (Porcine kidney)
  • American Association for the Advancement of Science (AAAS)  (1)
  • American Association for the Advancement of Science (AAAS)  (1)
  • Elsevier  (2)
  • 1
    Publication Date: 2014-10-25
    Description: During cell entry, capsids of incoming influenza A viruses (IAVs) must be uncoated before viral ribonucleoproteins (vRNPs) can enter the nucleus for replication. After hemagglutinin-mediated membrane fusion in late endocytic vacuoles, the vRNPs and the matrix proteins dissociate from each other and disperse within the cytosol. Here, we found that for capsid disassembly, IAV takes advantage of the host cell's aggresome formation and disassembly machinery. The capsids mimicked misfolded protein aggregates by carrying unanchored ubiquitin chains that activated a histone deacetylase 6 (HDAC6)-dependent pathway. The ubiquitin-binding domain was essential for recruitment of HDAC6 to viral fusion sites and for efficient uncoating and infection. That other components of the aggresome processing machinery, including dynein, dynactin, and myosin II, were also required suggested that physical forces generated by microtubule- and actin-associated motors are essential for IAV entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Indranil -- Miyake, Yasuyuki -- Nobs, Samuel Philip -- Schneider, Christoph -- Horvath, Peter -- Kopf, Manfred -- Matthias, Patrick -- Helenius, Ari -- Yamauchi, Yohei -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):473-7. doi: 10.1126/science.1257037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland. ; Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. ; Institute of Molecular Health Sciences, ETH Zurich, Switzerland. ; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary. ; Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. Faculty of Sciences, University of Basel, Basel, Switzerland. ; Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/*metabolism ; Cell Line, Tumor ; Cell Nucleus/virology ; Dyneins/metabolism ; Gene Knockout Techniques ; Histone Deacetylases/genetics/*physiology ; Host-Pathogen Interactions ; Humans ; Influenza A virus/*physiology ; Influenza, Human/genetics/metabolism/*virology ; Membrane Fusion/genetics/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microtubule-Associated Proteins/metabolism ; Microtubules/metabolism ; Myosin Type II/metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; RNA Interference ; Ribonucleoproteins/metabolism ; Ubiquitin/chemistry/metabolism ; *Virus Internalization ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...