Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (40)
  • Amino Acid Sequence  (6)
  • 1
    Publication Date: 2012-07-27
    Description: Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4alpha. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-beta signalling in Group 3, and NF-kappaB signalling in Group 4, suggest future avenues for rational, targeted therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Northcott, Paul A -- Shih, David J H -- Peacock, John -- Garzia, Livia -- Morrissy, A Sorana -- Zichner, Thomas -- Stutz, Adrian M -- Korshunov, Andrey -- Reimand, Juri -- Schumacher, Steven E -- Beroukhim, Rameen -- Ellison, David W -- Marshall, Christian R -- Lionel, Anath C -- Mack, Stephen -- Dubuc, Adrian -- Yao, Yuan -- Ramaswamy, Vijay -- Luu, Betty -- Rolider, Adi -- Cavalli, Florence M G -- Wang, Xin -- Remke, Marc -- Wu, Xiaochong -- Chiu, Readman Y B -- Chu, Andy -- Chuah, Eric -- Corbett, Richard D -- Hoad, Gemma R -- Jackman, Shaun D -- Li, Yisu -- Lo, Allan -- Mungall, Karen L -- Nip, Ka Ming -- Qian, Jenny Q -- Raymond, Anthony G J -- Thiessen, Nina T -- Varhol, Richard J -- Birol, Inanc -- Moore, Richard A -- Mungall, Andrew J -- Holt, Robert -- Kawauchi, Daisuke -- Roussel, Martine F -- Kool, Marcel -- Jones, David T W -- Witt, Hendrick -- Fernandez-L, Africa -- Kenney, Anna M -- Wechsler-Reya, Robert J -- Dirks, Peter -- Aviv, Tzvi -- Grajkowska, Wieslawa A -- Perek-Polnik, Marta -- Haberler, Christine C -- Delattre, Olivier -- Reynaud, Stephanie S -- Doz, Francois F -- Pernet-Fattet, Sarah S -- Cho, Byung-Kyu -- Kim, Seung-Ki -- Wang, Kyu-Chang -- Scheurlen, Wolfram -- Eberhart, Charles G -- Fevre-Montange, Michelle -- Jouvet, Anne -- Pollack, Ian F -- Fan, Xing -- Muraszko, Karin M -- Gillespie, G Yancey -- Di Rocco, Concezio -- Massimi, Luca -- Michiels, Erna M C -- Kloosterhof, Nanne K -- French, Pim J -- Kros, Johan M -- Olson, James M -- Ellenbogen, Richard G -- Zitterbart, Karel -- Kren, Leos -- Thompson, Reid C -- Cooper, Michael K -- Lach, Boleslaw -- McLendon, Roger E -- Bigner, Darell D -- Fontebasso, Adam -- Albrecht, Steffen -- Jabado, Nada -- Lindsey, Janet C -- Bailey, Simon -- Gupta, Nalin -- Weiss, William A -- Bognar, Laszlo -- Klekner, Almos -- Van Meter, Timothy E -- Kumabe, Toshihiro -- Tominaga, Teiji -- Elbabaa, Samer K -- Leonard, Jeffrey R -- Rubin, Joshua B -- Liau, Linda M -- Van Meir, Erwin G -- Fouladi, Maryam -- Nakamura, Hideo -- Cinalli, Giuseppe -- Garami, Miklos -- Hauser, Peter -- Saad, Ali G -- Iolascon, Achille -- Jung, Shin -- Carlotti, Carlos G -- Vibhakar, Rajeev -- Ra, Young Shin -- Robinson, Shenandoah -- Zollo, Massimo -- Faria, Claudia C -- Chan, Jennifer A -- Levy, Michael L -- Sorensen, Poul H B -- Meyerson, Matthew -- Pomeroy, Scott L -- Cho, Yoon-Jae -- Bader, Gary D -- Tabori, Uri -- Hawkins, Cynthia E -- Bouffet, Eric -- Scherer, Stephen W -- Rutka, James T -- Malkin, David -- Clifford, Steven C -- Jones, Steven J M -- Korbel, Jan O -- Pfister, Stefan M -- Marra, Marco A -- Taylor, Michael D -- AT1-112286/Canadian Institutes of Health Research/Canada -- CA116804/CA/NCI NIH HHS/ -- CA138292/CA/NCI NIH HHS/ -- CA159859/CA/NCI NIH HHS/ -- CA86335/CA/NCI NIH HHS/ -- K08 NS059790/NS/NINDS NIH HHS/ -- P20 CA151129/CA/NCI NIH HHS/ -- P30 CA138292/CA/NCI NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P41 GM103504/GM/NIGMS NIH HHS/ -- R01 CA086335/CA/NCI NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- R01 CA114567/CA/NCI NIH HHS/ -- R01 CA116804/CA/NCI NIH HHS/ -- R01 CA148621/CA/NCI NIH HHS/ -- R01 CA155360/CA/NCI NIH HHS/ -- R01 CA159859/CA/NCI NIH HHS/ -- R01 CA163737/CA/NCI NIH HHS/ -- R01 NS061070/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):49-56. doi: 10.1038/nature11327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22832581" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/genetics ; Cerebellar Neoplasms/*classification/*genetics/metabolism ; Child ; DNA Copy Number Variations/genetics ; Gene Duplication/genetics ; Genes, myc/genetics ; Genome, Human/*genetics ; Genomic Structural Variation/*genetics ; Genomics ; Hedgehog Proteins/metabolism ; Humans ; Medulloblastoma/*classification/*genetics/metabolism ; NF-kappa B/metabolism ; Nerve Tissue Proteins/genetics ; Oncogene Proteins, Fusion/genetics ; Proteins/genetics ; RNA, Long Noncoding ; Signal Transduction ; Transforming Growth Factor beta/metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-02
    Description: Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qin, Junjie -- Li, Yingrui -- Cai, Zhiming -- Li, Shenghui -- Zhu, Jianfeng -- Zhang, Fan -- Liang, Suisha -- Zhang, Wenwei -- Guan, Yuanlin -- Shen, Dongqian -- Peng, Yangqing -- Zhang, Dongya -- Jie, Zhuye -- Wu, Wenxian -- Qin, Youwen -- Xue, Wenbin -- Li, Junhua -- Han, Lingchuan -- Lu, Donghui -- Wu, Peixian -- Dai, Yali -- Sun, Xiaojuan -- Li, Zesong -- Tang, Aifa -- Zhong, Shilong -- Li, Xiaoping -- Chen, Weineng -- Xu, Ran -- Wang, Mingbang -- Feng, Qiang -- Gong, Meihua -- Yu, Jing -- Zhang, Yanyan -- Zhang, Ming -- Hansen, Torben -- Sanchez, Gaston -- Raes, Jeroen -- Falony, Gwen -- Okuda, Shujiro -- Almeida, Mathieu -- LeChatelier, Emmanuelle -- Renault, Pierre -- Pons, Nicolas -- Batto, Jean-Michel -- Zhang, Zhaoxi -- Chen, Hua -- Yang, Ruifu -- Zheng, Weimou -- Li, Songgang -- Yang, Huanming -- Wang, Jian -- Ehrlich, S Dusko -- Nielsen, Rasmus -- Pedersen, Oluf -- Kristiansen, Karsten -- Wang, Jun -- England -- Nature. 2012 Oct 4;490(7418):55-60. doi: 10.1038/nature11450. Epub 2012 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023125" target="_blank"〉PubMed〈/a〉
    Keywords: Asian Continental Ancestry Group ; Butyrates/metabolism ; China/ethnology ; Cohort Studies ; Diabetes Mellitus, Type ; 2/classification/complications/*microbiology/physiopathology ; Feces/microbiology ; Genetic Linkage/genetics ; Genetic Markers ; Genome-Wide Association Study/*methods ; High-Throughput Nucleotide Sequencing ; Humans ; Intestines/*microbiology ; Metabolic Networks and Pathways/genetics ; Metagenome/*genetics ; Metagenomics/*methods ; Opportunistic Infections/complications/microbiology ; Reference Standards ; Sulfates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-09
    Description: The newly emergent Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe pulmonary disease in humans, representing the second example of a highly pathogenic coronavirus, the first being SARS-CoV. CD26 (also known as dipeptidyl peptidase 4, DPP4) was recently identified as the cellular receptor for MERS-CoV. The engagement of the MERS-CoV spike protein with CD26 mediates viral attachment to host cells and virus-cell fusion, thereby initiating infection. Here we delineate the molecular basis of this specific interaction by presenting the first crystal structures of both the free receptor binding domain (RBD) of the MERS-CoV spike protein and its complex with CD26. Furthermore, binding between the RBD and CD26 is measured using real-time surface plasmon resonance with a dissociation constant of 16.7 nM. The viral RBD is composed of a core subdomain homologous to that of the SARS-CoV spike protein, and a unique strand-dominated external receptor binding motif that recognizes blades IV and V of the CD26 beta-propeller. The atomic details at the interface between the two binding entities reveal a surprising protein-protein contact mediated mainly by hydrophilic residues. Sequence alignment indicates, among betacoronaviruses, a possible structural conservation for the region homologous to the MERS-CoV RBD core, but a high variation in the external receptor binding motif region for virus-specific pathogenesis such as receptor recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Guangwen -- Hu, Yawei -- Wang, Qihui -- Qi, Jianxun -- Gao, Feng -- Li, Yan -- Zhang, Yanfang -- Zhang, Wei -- Yuan, Yuan -- Bao, Jinku -- Zhang, Buchang -- Shi, Yi -- Yan, Jinghua -- Gao, George F -- England -- Nature. 2013 Aug 8;500(7461):227-31. doi: 10.1038/nature12328. Epub 2013 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23831647" target="_blank"〉PubMed〈/a〉
    Keywords: Conserved Sequence/genetics ; Coronavirus/*chemistry/genetics/*metabolism ; Dipeptidyl Peptidase 4/*chemistry/metabolism ; Humans ; Protein Binding ; Protein Interaction Domains and Motifs/genetics ; Protein Structure, Tertiary/genetics ; Receptors, Virus/*chemistry/*metabolism ; *Virus Attachment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-29
    Description: Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (〉90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Yongmei -- Li, Lin -- Ou, Yunwei -- Gao, Zhibo -- Li, Enmin -- Li, Xiangchun -- Zhang, Weimin -- Wang, Jiaqian -- Xu, Liyan -- Zhou, Yong -- Ma, Xiaojuan -- Liu, Lingyan -- Zhao, Zitong -- Huang, Xuanlin -- Fan, Jing -- Dong, Lijia -- Chen, Gang -- Ma, Liying -- Yang, Jie -- Chen, Longyun -- He, Minghui -- Li, Miao -- Zhuang, Xuehan -- Huang, Kai -- Qiu, Kunlong -- Yin, Guangliang -- Guo, Guangwu -- Feng, Qiang -- Chen, Peishan -- Wu, Zhiyong -- Wu, Jianyi -- Ma, Ling -- Zhao, Jinyang -- Luo, Longhai -- Fu, Ming -- Xu, Bainan -- Chen, Bo -- Li, Yingrui -- Tong, Tong -- Wang, Mingrong -- Liu, Zhihua -- Lin, Dongxin -- Zhang, Xiuqing -- Yang, Huanming -- Wang, Jun -- Zhan, Qimin -- England -- Nature. 2014 May 1;509(7498):91-5. doi: 10.1038/nature13176. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2]. ; 1] BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China [2]. ; 1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2] Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China [3]. ; 1] Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China [2]. ; State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ; BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China. ; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Tumor Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China. ; Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670651" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Drinking/adverse effects ; Biomarkers, Tumor/genetics ; Carcinoma, Squamous Cell/*genetics/pathology ; Cell Cycle/genetics ; Chromosomes, Human, Pair 11/genetics ; Comparative Genomic Hybridization ; DNA Copy Number Variations/genetics ; Esophageal Neoplasms/*genetics/pathology ; Exome/genetics ; Female ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Humans ; Male ; MicroRNAs/genetics ; Mutation/*genetics ; Oncogenes/genetics ; Phenotype ; Receptors, Notch/genetics ; Risk Factors ; Wnt Signaling Pathway/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-21
    Description: The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Mingyao -- Wang, Isabel X -- Li, Yun -- Bruzel, Alan -- Richards, Allison L -- Toung, Jonathan M -- Cheung, Vivian G -- R01 HG005854/HG/NHGRI NIH HHS/ -- R01 HG005854-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):53-8. doi: 10.1126/science.1207018. Epub 2011 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596952" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; B-Lymphocytes ; Base Sequence ; Cell Line ; Cerebral Cortex/cytology ; DNA/chemistry/*genetics ; Exons ; Expressed Sequence Tags ; Fibroblasts ; Gene Expression Profiling ; *Genetic Variation ; *Genome, Human ; Genotype ; Humans ; Mass Spectrometry ; Middle Aged ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Proteins/chemistry ; Proteome/chemistry ; RNA, Messenger/chemistry/*genetics ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Skin/cytology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-05
    Description: Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077050/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077050/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mills, Ryan E -- Walter, Klaudia -- Stewart, Chip -- Handsaker, Robert E -- Chen, Ken -- Alkan, Can -- Abyzov, Alexej -- Yoon, Seungtai Chris -- Ye, Kai -- Cheetham, R Keira -- Chinwalla, Asif -- Conrad, Donald F -- Fu, Yutao -- Grubert, Fabian -- Hajirasouliha, Iman -- Hormozdiari, Fereydoun -- Iakoucheva, Lilia M -- Iqbal, Zamin -- Kang, Shuli -- Kidd, Jeffrey M -- Konkel, Miriam K -- Korn, Joshua -- Khurana, Ekta -- Kural, Deniz -- Lam, Hugo Y K -- Leng, Jing -- Li, Ruiqiang -- Li, Yingrui -- Lin, Chang-Yun -- Luo, Ruibang -- Mu, Xinmeng Jasmine -- Nemesh, James -- Peckham, Heather E -- Rausch, Tobias -- Scally, Aylwyn -- Shi, Xinghua -- Stromberg, Michael P -- Stutz, Adrian M -- Urban, Alexander Eckehart -- Walker, Jerilyn A -- Wu, Jiantao -- Zhang, Yujun -- Zhang, Zhengdong D -- Batzer, Mark A -- Ding, Li -- Marth, Gabor T -- McVean, Gil -- Sebat, Jonathan -- Snyder, Michael -- Wang, Jun -- Ye, Kenny -- Eichler, Evan E -- Gerstein, Mark B -- Hurles, Matthew E -- Lee, Charles -- McCarroll, Steven A -- Korbel, Jan O -- 1000 Genomes Project -- 062023/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077014/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 085532/Wellcome Trust/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- G1000758/Medical Research Council/United Kingdom -- P01 HG004120/HG/NHGRI NIH HHS/ -- P41 HG004221/HG/NHGRI NIH HHS/ -- P41 HG004221-01/HG/NHGRI NIH HHS/ -- P41 HG004221-02/HG/NHGRI NIH HHS/ -- P41 HG004221-03/HG/NHGRI NIH HHS/ -- P41 HG004221-03S1/HG/NHGRI NIH HHS/ -- P41 HG004221-03S2/HG/NHGRI NIH HHS/ -- P41 HG004221-03S3/HG/NHGRI NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM081533/GM/NIGMS NIH HHS/ -- R01 GM081533-01A1/GM/NIGMS NIH HHS/ -- R01 GM081533-02/GM/NIGMS NIH HHS/ -- R01 GM081533-03/GM/NIGMS NIH HHS/ -- R01 GM081533-04/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG004719/HG/NHGRI NIH HHS/ -- R01 HG004719-01/HG/NHGRI NIH HHS/ -- R01 HG004719-02/HG/NHGRI NIH HHS/ -- R01 HG004719-02S1/HG/NHGRI NIH HHS/ -- R01 HG004719-03/HG/NHGRI NIH HHS/ -- R01 HG004719-04/HG/NHGRI NIH HHS/ -- R01 MH091350/MH/NIMH NIH HHS/ -- RC2 HG005552/HG/NHGRI NIH HHS/ -- RC2 HG005552-01/HG/NHGRI NIH HHS/ -- RC2 HG005552-02/HG/NHGRI NIH HHS/ -- U01 HG005209/HG/NHGRI NIH HHS/ -- U01 HG005209-01/HG/NHGRI NIH HHS/ -- U01 HG005209-02/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Feb 3;470(7332):59-65. doi: 10.1038/nature09708.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293372" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Copy Number Variations/*genetics ; Gene Duplication/genetics ; Genetic Predisposition to Disease/genetics ; *Genetics, Population ; Genome, Human/*genetics ; *Genomics ; Genotype ; Humans ; Mutagenesis, Insertional/genetics ; Reproducibility of Results ; Sequence Analysis, DNA ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-07-15
    Description: Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by NEUROD2. Further addition of neurogenic transcription factors ASCL1 and MYT1L enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoo, Andrew S -- Sun, Alfred X -- Li, Li -- Shcheglovitov, Aleksandr -- Portmann, Thomas -- Li, Yulong -- Lee-Messer, Chris -- Dolmetsch, Ricardo E -- Tsien, Richard W -- Crabtree, Gerald R -- AI060037/AI/NIAID NIH HHS/ -- F30MH093125/MH/NIMH NIH HHS/ -- GM58234/GM/NIGMS NIH HHS/ -- HD55391/HD/NICHD NIH HHS/ -- MH064070/MH/NIMH NIH HHS/ -- NS046789/NS/NINDS NIH HHS/ -- NS24067/NS/NINDS NIH HHS/ -- R01 HD055391/HD/NICHD NIH HHS/ -- R01 HD055391-01A1/HD/NICHD NIH HHS/ -- R01 HD055391-02/HD/NICHD NIH HHS/ -- R01 HD055391-03/HD/NICHD NIH HHS/ -- R01 HD055391-04/HD/NICHD NIH HHS/ -- R01 HD055391-05/HD/NICHD NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01 NS046789-06/NS/NINDS NIH HHS/ -- R01 NS046789-07/NS/NINDS NIH HHS/ -- R01 NS046789-07S1/NS/NINDS NIH HHS/ -- R01 NS046789-08/NS/NINDS NIH HHS/ -- R01 NS046789-09/NS/NINDS NIH HHS/ -- R01 NS046789-09S1/NS/NINDS NIH HHS/ -- R01 NS046789-10/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jul 13;476(7359):228-31. doi: 10.1038/nature10323.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University, Stanford, California 94305, USA. yooa@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21753754" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biomarkers/analysis/metabolism ; Cell Differentiation/*genetics ; Cell Line ; Cell Lineage/genetics ; DNA-Binding Proteins/genetics/metabolism ; Excitatory Postsynaptic Potentials/physiology ; Fibroblasts/*cytology/*metabolism ; Humans ; Infant, Newborn ; MicroRNAs/*genetics/metabolism ; Microtubule-Associated Proteins/analysis/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/*cytology/*metabolism ; Neuropeptides/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Tubulin/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-13
    Description: The innate immune response is essential for combating infectious disease. Macrophages and other cells respond to infection by releasing cytokines, such as interleukin-1beta (IL-1beta), which in turn activate a well-described, myeloid-differentiation factor 88 (MYD88)-mediated, nuclear factor-kappaB (NF-kappaB)-dependent transcriptional pathway that results in inflammatory-cell activation and recruitment. Endothelial cells, which usually serve as a barrier to the movement of inflammatory cells out of the blood and into tissue, are also critical mediators of the inflammatory response. Paradoxically, the cytokines vital to a successful immune defence also have disruptive effects on endothelial cell-cell interactions and can trigger degradation of barrier function and dissociation of tissue architecture. The mechanism of this barrier dissolution and its relationship to the canonical NF-kappaB pathway remain poorly defined. Here we show that the direct, immediate and disruptive effects of IL-1beta on endothelial stability in a human in vitro cell model are NF-kappaB independent and are instead the result of signalling through the small GTPase ADP-ribosylation factor 6 (ARF6) and its activator ARF nucleotide binding site opener (ARNO; also known as CYTH2). Moreover, we show that ARNO binds directly to the adaptor protein MYD88, and thus propose MYD88-ARNO-ARF6 as a proximal IL-1beta signalling pathway distinct from that mediated by NF-kappaB. Finally, we show that SecinH3, an inhibitor of ARF guanine nucleotide-exchange factors such as ARNO, enhances vascular stability and significantly improves outcomes in animal models of inflammatory arthritis and acute inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Weiquan -- London, Nyall R -- Gibson, Christopher C -- Davis, Chadwick T -- Tong, Zongzhong -- Sorensen, Lise K -- Shi, Dallas S -- Guo, Jinping -- Smith, Matthew C P -- Grossmann, Allie H -- Thomas, Kirk R -- Li, Dean Y -- R01 CA163970/CA/NCI NIH HHS/ -- R01 HL065648/HL/NHLBI NIH HHS/ -- R01 HL084516/HL/NHLBI NIH HHS/ -- U54 HL112311/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Dec 13;492(7428):252-5. doi: 10.1038/nature11603. Epub 2012 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Utah, Salt Lake City, Utah 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23143332" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Adjuvants, Immunologic/pharmacology ; Animals ; Arthritis/pathology ; Cadherins/metabolism ; Capillary Permeability/drug effects ; Cell Line ; Endothelial Cells/drug effects ; Enzyme Activation/drug effects ; GTPase-Activating Proteins/*metabolism ; Humans ; Interleukin-1beta/pharmacology ; Myeloid Differentiation Factor 88/*metabolism ; NF-kappa B/metabolism ; Protein Kinase Inhibitors/pharmacology ; Protein Transport/drug effects ; Purines/pharmacology ; Receptors, Interleukin/*metabolism ; Signal Transduction ; Thiophenes/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-22
    Description: A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-alpha signalling in these cells. Unexpectedly, we found that TNF-alpha-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Fulai -- Li, Yan -- Dixon, Jesse R -- Selvaraj, Siddarth -- Ye, Zhen -- Lee, Ah Young -- Yen, Chia-An -- Schmitt, Anthony D -- Espinoza, Celso A -- Ren, Bing -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50 GM085764-03/GM/NIGMS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):290-4. doi: 10.1038/nature12644. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141950" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromatin/chemistry/genetics/*metabolism ; *Chromosome Mapping ; Enhancer Elements, Genetic/physiology ; Gene Expression Regulation ; *Genome, Human ; Humans ; Imaging, Three-Dimensional ; Promoter Regions, Genetic/physiology ; Protein Binding ; Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...