Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (243)
  • Animals  (201)
  • Humans  (164)
  • 1
    Publication Date: 2012-06-16
    Description: Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Won, Hyejung -- Lee, Hye-Ryeon -- Gee, Heon Yung -- Mah, Won -- Kim, Jae-Ick -- Lee, Jiseok -- Ha, Seungmin -- Chung, Changuk -- Jung, Eun Suk -- Cho, Yi Sul -- Park, Sae-Geun -- Lee, Jung-Soo -- Lee, Kyungmin -- Kim, Daesoo -- Bae, Yong Chul -- Kaang, Bong-Kiun -- Lee, Min Goo -- Kim, Eunjoon -- England -- Nature. 2012 Jun 13;486(7402):261-5. doi: 10.1038/nature11208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699620" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Antimetabolites/pharmacology ; *Autistic Disorder/genetics/metabolism ; Behavior, Animal/*drug effects/physiology ; Benzamides/*pharmacology ; Cycloserine/*pharmacology ; Disease Models, Animal ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Pyrazoles/*pharmacology ; Receptors, N-Methyl-D-Aspartate/*agonists/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-19
    Description: Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seung-Kyun -- Murphy, Rory K J -- Hwang, Suk-Won -- Lee, Seung Min -- Harburg, Daniel V -- Krueger, Neil A -- Shin, Jiho -- Gamble, Paul -- Cheng, Huanyu -- Yu, Sooyoun -- Liu, Zhuangjian -- McCall, Jordan G -- Stephen, Manu -- Ying, Hanze -- Kim, Jeonghyun -- Park, Gayoung -- Webb, R Chad -- Lee, Chi Hwan -- Chung, Sangjin -- Wie, Dae Seung -- Gujar, Amit D -- Vemulapalli, Bharat -- Kim, Albert H -- Lee, Kyung-Mi -- Cheng, Jianjun -- Huang, Younggang -- Lee, Sang Hoon -- Braun, Paul V -- Ray, Wilson Z -- Rogers, John A -- F31MH101956/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Feb 4;530(7588):71-6. doi: 10.1038/nature16492. Epub 2016 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea. ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; Institute of High Performance Computing, Singapore 138632, Singapore. ; Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Biomicrosystem Technology, Korea University, Seoul 136-701, South Korea. ; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-713, South Korea. ; Weldon School of Biomedical Engineering, School of Mechanical Engineering, The Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. ; School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA. ; Department of Mechanical Engineering, Civil and Environmental Engineering, Materials Science and Engineering, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208, USA. ; Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-703, South Korea. ; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26779949" target="_blank"〉PubMed〈/a〉
    Keywords: *Absorbable Implants/adverse effects ; Administration, Cutaneous ; Animals ; Body Temperature ; Brain/*metabolism/surgery ; Electronics/*instrumentation ; Equipment Design ; Hydrolysis ; Male ; Monitoring, Physiologic/adverse effects/*instrumentation ; Organ Specificity ; Pressure ; *Prostheses and Implants/adverse effects ; Rats ; Rats, Inbred Lew ; *Silicon ; Telemetry/instrumentation ; Wireless Technology/instrumentation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0935-6304
    Keywords: Capillary GC ; Enantiomer resolution ; Chiral stationary phase ; Derivated cyclodextrins ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Three new β-cyclodextrin derivatives, heptakis(6-O-isopropyldi-methylsilyl-2,3-di-O-ethyl)-β-cyclodextrin, heptakis(6-O-thexyldi-methylsilyl-2,3-di-O-ethyl)-β-cyclodextrin, and heptakis(6-O-cy-clohexyldimethyl-2,3-di-O-ethyl)-β-cyclodextrin (IPDE-β-CD, TXDE-β-CD, and CHDE-β-CD), were synthesized and the enan-tioselectivities of these three CD derivatives and heptakis(6-O-tert-butyldimethylsilyl-2,3-di-O-ethyl)-β-cyclodextrin (TBDE-β-CD) were compared for GC separation of a range of chiral test com-pounds. In particular TXDE-β-CD showed much higher enentio-selectivity than TBDE-β-CD. Enentioselectivities of IPDE-β-CD and CHDE-β-CD are somewhat lower than that of TXDE-β-CD and CHDE-β-Cd are somewhat lower than that of TXDE-β-CD. These observations are indicative of significant effects of subtle changes in the structure of the 6-O-substituent on the enantioselec-tivity of the β-CD derivatives. The difference in enantioselectivities of the 6-O-substituted CD derivatives were explained in terms of relative contributions of the effects of hydrophobicity and steric hindrance of the substituent to the inclusion process. CHDE-β-CD showed the lowest enantioselectivity among the threederivatives. It is likely that the unfavorable steric hindrance of the bulky cyclo-hexyl group plays a greater role than the favorable hydrophobicity effect of the cyclohexyl group in the inclusion process in CHDE-β-CD. IPDE-β-CD showed lower selectivity than TXDE-β-CD and TBDE-β-CD. In the case of these CD derivatives having acyclic substituents the relative hydrophobicity of the substituent seems to be a dominant factor affecting the inclusion process. Isopropyl groups factor affecting the inclusion process. Isopropyl groups are less hydrophobic than thexyl and tert-butyl groups.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0935-6304
    Keywords: Capillary GC ; Enantiomer resolution ; Chiral stationary phases ; Derivatized cyclodextrins ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Three new chiral selectors, 6-tert-butyldimethylsilyl-2,3-diethyl-a-cyclodextrin, 6-tert-butyldimethylsilyl-2,3-diethyl- and dipropyl-β-cyclodextrin (TBDE-α-CD, TBDE-β-CD, TBDP-β-CD) were synthesized and tested as chiral stationary phases in capillary gas chromatography. TBDE-β-CD in particular showed a high enan-tioselectivity for test chiral compounds due to good solubility in a polar polysiloxane (OV-1701). Enantioselectivity obtained with TBDE-β-CD was compared with that of 6-tert-butyldimethylsilyl-2,3-di-O-methyl-β-cyclodextrin (TBDM-β-CD). Better enantiose-lectivity was obtained with TBDE-P-CD than with TBDM-β-CD for the test chiral compounds studied. This is probably due to greater effect of the increased hydrophobicity of TBDE-β-CD which favors inclusion of the analytes than the effect of increased steric hindrance. With TBDP-β-CD the less polar lactones are well separated due most likely to increased hydrophobicity of the propyl groups while the more polar are not well resolved. For TBDP-β-CD it is likely that the unfavorable steric hindrance is predominant over the favorable hydrophobicity of the propyl groups, thus hindering the formation of inclusion complexes of the alcohols with TBDP-β-CD. TBDE-α-CD was also a valuable chiral selector for the separation of small chiral molecules such as simple secondary alcohols and nitro-substituted alcohols.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0935-6304
    Keywords: A,C- and A,D-bridged calix[6]arene ; stationary phase ; capillary gas chromatography ; geometric and positional isomer separation ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ---A,C-Bridged (ACCX) and A,D-bridged isopropyldimethylsilylcalix[6]arene (ADCX) dissolved in OV-1701 were used as stationary phases in isothermal capillary gas chromatographic separation of some positional isomers. Retention factors and separation factors for the isomers were measured. The isomers investigated are well resolved on the two phases. Retention of all the solutes investigated is longer on ACCX than on ADCX. The longer retention on A,C-bridged calix[6]arene is probably due to extra inductive interactions of the solute molecule with the carbonyl moieties in the phase. Separation factors for closely eluting isomer pairs are similar on the two phases. This seems to indicate that the carbonyl moieties do not play an appreciable role in discriminating the isomer molecules on entering the cavity of the calixarene if the solute is retained by the inclusion process.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-17
    Description: Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Florian L -- Colla, Simona -- Aquilanti, Elisa -- Manzo, Veronica E -- Genovese, Giannicola -- Lee, Jaclyn -- Eisenson, Daniel -- Narurkar, Rujuta -- Deng, Pingna -- Nezi, Luigi -- Lee, Michelle A -- Hu, Baoli -- Hu, Jian -- Sahin, Ergun -- Ong, Derrick -- Fletcher-Sananikone, Eliot -- Ho, Dennis -- Kwong, Lawrence -- Brennan, Cameron -- Wang, Y Alan -- Chin, Lynda -- DePinho, Ronald A -- 3 P01 CA095616-08S1/CA/NCI NIH HHS/ -- 57006984/Howard Hughes Medical Institute/ -- P01 CA095616/CA/NCI NIH HHS/ -- P01CA95616/CA/NCI NIH HHS/ -- T32-CA009361/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):337-42. doi: 10.1038/nature11331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22895339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; Biomarkers, Tumor/deficiency/genetics ; Brain Neoplasms/*drug therapy/*genetics/pathology ; Cell Line, Tumor ; Cell Proliferation ; Chromosomes, Human, Pair 1/genetics ; DNA-Binding Proteins/deficiency/genetics ; Enzyme Inhibitors ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Genes, Essential/*genetics ; Genes, Tumor Suppressor ; Glioblastoma/*drug therapy/*genetics/pathology ; Homozygote ; Humans ; Hydroxamic Acids/pharmacology/therapeutic use ; Mice ; Molecular Targeted Therapy/*methods ; Neoplasm Transplantation ; Phosphonoacetic Acid/analogs & derivatives/pharmacology/therapeutic use ; Phosphopyruvate Hydratase/antagonists & inhibitors/deficiency/genetics/metabolism ; RNA, Small Interfering/genetics ; Sequence Deletion/*genetics ; Tumor Suppressor Proteins/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-20
    Description: Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhao -- Cheng, Katherine -- Walton, Zandra -- Wang, Yuchuan -- Ebi, Hiromichi -- Shimamura, Takeshi -- Liu, Yan -- Tupper, Tanya -- Ouyang, Jing -- Li, Jie -- Gao, Peng -- Woo, Michele S -- Xu, Chunxiao -- Yanagita, Masahiko -- Altabef, Abigail -- Wang, Shumei -- Lee, Charles -- Nakada, Yuji -- Pena, Christopher G -- Sun, Yanping -- Franchetti, Yoko -- Yao, Catherine -- Saur, Amy -- Cameron, Michael D -- Nishino, Mizuki -- Hayes, D Neil -- Wilkerson, Matthew D -- Roberts, Patrick J -- Lee, Carrie B -- Bardeesy, Nabeel -- Butaney, Mohit -- Chirieac, Lucian R -- Costa, Daniel B -- Jackman, David -- Sharpless, Norman E -- Castrillon, Diego H -- Demetri, George D -- Janne, Pasi A -- Pandolfi, Pier Paolo -- Cantley, Lewis C -- Kung, Andrew L -- Engelman, Jeffrey A -- Wong, Kwok-Kin -- 1U01CA141576/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA137008/CA/NCI NIH HHS/ -- CA137008-01/CA/NCI NIH HHS/ -- CA137181/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA147940/CA/NCI NIH HHS/ -- K23 CA157631/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA090578-06/CA/NCI NIH HHS/ -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-01/CA/NCI NIH HHS/ -- R01 CA137008/CA/NCI NIH HHS/ -- R01 CA137008-01/CA/NCI NIH HHS/ -- R01 CA137181/CA/NCI NIH HHS/ -- R01 CA137181-01A2/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA140594-01/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- RC2 CA147940/CA/NCI NIH HHS/ -- RC2 CA147940-01/CA/NCI NIH HHS/ -- U01 CA141576/CA/NCI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22425996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Combined Chemotherapy Protocols ; Benzimidazoles/*pharmacology/therapeutic use ; Biomarkers, Tumor/genetics/metabolism ; *Clinical Trials, Phase II as Topic ; *Disease Models, Animal ; Drug Evaluation, Preclinical ; Fluorodeoxyglucose F18 ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/metabolism ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Mutation/genetics ; Pharmacogenetics/*methods ; Positron-Emission Tomography ; Protein-Serine-Threonine Kinases/deficiency/genetics ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Randomized Controlled Trials as Topic ; Reproducibility of Results ; Taxoids/*therapeutic use ; Tomography, X-Ray Computed ; Treatment Outcome ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-16
    Description: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenen, Martien A M -- Archibald, Alan L -- Uenishi, Hirohide -- Tuggle, Christopher K -- Takeuchi, Yasuhiro -- Rothschild, Max F -- Rogel-Gaillard, Claire -- Park, Chankyu -- Milan, Denis -- Megens, Hendrik-Jan -- Li, Shengting -- Larkin, Denis M -- Kim, Heebal -- Frantz, Laurent A F -- Caccamo, Mario -- Ahn, Hyeonju -- Aken, Bronwen L -- Anselmo, Anna -- Anthon, Christian -- Auvil, Loretta -- Badaoui, Bouabid -- Beattie, Craig W -- Bendixen, Christian -- Berman, Daniel -- Blecha, Frank -- Blomberg, Jonas -- Bolund, Lars -- Bosse, Mirte -- Botti, Sara -- Bujie, Zhan -- Bystrom, Megan -- Capitanu, Boris -- Carvalho-Silva, Denise -- Chardon, Patrick -- Chen, Celine -- Cheng, Ryan -- Choi, Sang-Haeng -- Chow, William -- Clark, Richard C -- Clee, Christopher -- Crooijmans, Richard P M A -- Dawson, Harry D -- Dehais, Patrice -- De Sapio, Fioravante -- Dibbits, Bert -- Drou, Nizar -- Du, Zhi-Qiang -- Eversole, Kellye -- Fadista, Joao -- Fairley, Susan -- Faraut, Thomas -- Faulkner, Geoffrey J -- Fowler, Katie E -- Fredholm, Merete -- Fritz, Eric -- Gilbert, James G R -- Giuffra, Elisabetta -- Gorodkin, Jan -- Griffin, Darren K -- Harrow, Jennifer L -- Hayward, Alexander -- Howe, Kerstin -- Hu, Zhi-Liang -- Humphray, Sean J -- Hunt, Toby -- Hornshoj, Henrik -- Jeon, Jin-Tae -- Jern, Patric -- Jones, Matthew -- Jurka, Jerzy -- Kanamori, Hiroyuki -- Kapetanovic, Ronan -- Kim, Jaebum -- Kim, Jae-Hwan -- Kim, Kyu-Won -- Kim, Tae-Hun -- Larson, Greger -- Lee, Kyooyeol -- Lee, Kyung-Tai -- Leggett, Richard -- Lewin, Harris A -- Li, Yingrui -- Liu, Wansheng -- Loveland, Jane E -- Lu, Yao -- Lunney, Joan K -- Ma, Jian -- Madsen, Ole -- Mann, Katherine -- Matthews, Lucy -- McLaren, Stuart -- Morozumi, Takeya -- Murtaugh, Michael P -- Narayan, Jitendra -- Nguyen, Dinh Truong -- Ni, Peixiang -- Oh, Song-Jung -- Onteru, Suneel -- Panitz, Frank -- Park, Eung-Woo -- Park, Hong-Seog -- Pascal, Geraldine -- Paudel, Yogesh -- Perez-Enciso, Miguel -- Ramirez-Gonzalez, Ricardo -- Reecy, James M -- Rodriguez-Zas, Sandra -- Rohrer, Gary A -- Rund, Lauretta -- Sang, Yongming -- Schachtschneider, Kyle -- Schraiber, Joshua G -- Schwartz, John -- Scobie, Linda -- Scott, Carol -- Searle, Stephen -- Servin, Bertrand -- Southey, Bruce R -- Sperber, Goran -- Stadler, Peter -- Sweedler, Jonathan V -- Tafer, Hakim -- Thomsen, Bo -- Wali, Rashmi -- Wang, Jian -- Wang, Jun -- White, Simon -- Xu, Xun -- Yerle, Martine -- Zhang, Guojie -- Zhang, Jianguo -- Zhang, Jie -- Zhao, Shuhong -- Rogers, Jane -- Churcher, Carol -- Schook, Lawrence B -- 095908/Wellcome Trust/United Kingdom -- 249894/European Research Council/International -- 5 P41 LM006252/LM/NLM NIH HHS/ -- 5 P41LM006252/LM/NLM NIH HHS/ -- BB/E010520/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010520/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010768/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E011640/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G004013/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H005935/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900950/Medical Research Council/United Kingdom -- P20-RR017686/RR/NCRR NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R13 RR020283A/RR/NCRR NIH HHS/ -- R13 RR032267A/RR/NCRR NIH HHS/ -- R21 DA027548/DA/NIDA NIH HHS/ -- R21 HG006464/HG/NHGRI NIH HHS/ -- T32 AI083196/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):393-8. doi: 10.1038/nature11622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands. martien.groenen@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-30
    Description: Mutations in mitochondrial DNA (mtDNA) are associated with severe human diseases and are maternally inherited through the egg's cytoplasm. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST; also called spindle-chromosomal complex transfer). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%); however, a significant portion of ST zygotes (52%) showed abnormal fertilization as determined by an irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell isolation (38%) rates were comparable to controls. All embryonic stem cell lines derived from ST zygotes had normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing embryonic stem cells similar to controls.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachibana, Masahito -- Amato, Paula -- Sparman, Michelle -- Woodward, Joy -- Sanchis, Dario Melguizo -- Ma, Hong -- Gutierrez, Nuria Marti -- Tippner-Hedges, Rebecca -- Kang, Eunju -- Lee, Hyo-Sang -- Ramsey, Cathy -- Masterson, Keith -- Battaglia, David -- Lee, David -- Wu, Diana -- Jensen, Jeffrey -- Patton, Phillip -- Gokhale, Sumita -- Stouffer, Richard -- Mitalipov, Shoukhrat -- 8P51OD011092/OD/NIH HHS/ -- EY021214/EY/NEI NIH HHS/ -- HD057121/HD/NICHD NIH HHS/ -- HD059946/HD/NICHD NIH HHS/ -- HD063276/HD/NICHD NIH HHS/ -- P51 OD011092/OD/NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- R01 EY021214/EY/NEI NIH HHS/ -- R01 HD057121/HD/NICHD NIH HHS/ -- R01 HD059946/HD/NICHD NIH HHS/ -- R01 HD063276/HD/NICHD NIH HHS/ -- England -- Nature. 2013 Jan 31;493(7434):627-31. doi: 10.1038/nature11647. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103867" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Nucleus/genetics ; Cryopreservation ; Cytoplasm/genetics ; DNA, Mitochondrial/analysis/genetics ; Embryo, Mammalian/embryology ; Embryonic Stem Cells/cytology ; Female ; Fertilization ; *Genetic Therapy ; Humans ; Macaca mulatta/genetics/growth & development ; Microsatellite Repeats/genetics ; Mitochondrial Diseases/*genetics/*therapy ; Nuclear Transfer Techniques/*standards ; Oocytes/cytology ; Pregnancy ; Young Adult ; Zygote/cytology/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-23
    Description: The holotype of Deinocheirus mirificus was collected by the 1965 Polish-Mongolian Palaeontological Expedition at Altan Uul III in the southern Gobi of Mongolia. Because the holotype consists mostly of giant forelimbs (2.4 m in length) with scapulocoracoids, for almost 50 years Deinocheirus has remained one of the most mysterious dinosaurs. The mosaic of ornithomimosaur and non-ornithomimosaur characters in the holotype has made it difficult to resolve the phylogenetic status of Deinocheirus. Here we describe two new specimens of Deinocheirus that were discovered in the Nemegt Formation of Altan Uul IV in 2006 and Bugiin Tsav in 2009. The Bugiin Tsav specimen (MPC-D 100/127) includes a left forelimb clearly identifiable as Deinocheirus and is 6% longer than the holotype. The Altan Uul IV specimen (MPC-D 100/128) is approximately 74% the size of MPC-D 100/127. Cladistic analysis indicates that Deinocheirus is the largest member of the Ornithomimosauria; however, it has many unique skeletal features unknown in other ornithomimosaurs, indicating that Deinocheirus was a heavily built, non-cursorial animal with an elongate snout, a deep jaw, tall neural spines, a pygostyle, a U-shaped furcula, an expanded pelvis for strong muscle attachments, a relatively short hind limb and broad-tipped pedal unguals. Ecomorphological features in the skull, more than a thousand gastroliths, and stomach contents (fish remains) suggest that Deinocheirus was a megaomnivore that lived in mesic environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Yuong-Nam -- Barsbold, Rinchen -- Currie, Philip J -- Kobayashi, Yoshitsugu -- Lee, Hang-Jae -- Godefroit, Pascal -- Escuillie, Francois -- Chinzorig, Tsogtbaatar -- England -- Nature. 2014 Nov 13;515(7526):257-60. doi: 10.1038/nature13874. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geological Museum, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, South Korea. ; Paleontological Center, Mongolian Academy of Sciences, Ulaanbaatar 210-351, Mongolia. ; Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada. ; Hokkaido University Museum, Hokkaido University, Sapporo 060-0810, Japan. ; Earth and History of Life, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Bruxelles, Belgium. ; Eldonia, 9 Avenue des Portes Occitanes, 3800 Gannat, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Dinosaurs/*anatomy & histology/*classification ; *Fossils ; Mongolia ; Phylogeny ; Skeleton ; Skull/anatomy & histology ; Spine/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...