Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IDENTIFICATION  (2)
  • 1
    Keywords: CELLS ; EXPRESSION ; tumor ; BLOOD ; carcinoma ; human ; MICROSCOPY ; liver ; PROTEIN ; PROTEINS ; TUMORS ; FAMILY ; RAT ; hepatocytes ; MEMBER ; MEMBERS ; antibodies ; MOUSE ; IDENTIFICATION ; RAT-LIVER ; MEMBRANE ; metastases ; CONJUGATE ; LOCALIZATION ; EPITHELIAL-CELLS ; HEPATOCYTE CANALICULAR ISOFORM ; METASTATIC CARCINOMAS ; MULTIDRUG-RESISTANCE PROTEIN ; POLYPEPTIDE OATP2
    Abstract: Transport proteins mediating the selective uptake of organic anions into human hepatocytes include the organic anion transporters SLC21A6 (also termed OATP2, OATP-C, or LST-1) and SLC21A8 (OATP8). Both transporters are localized to the basolateral membrane of human hepatocytes. Because of the importance of these transporters for hepatobiliary elimination, including the removal of bilirubin and its conjugates from the blood circulation, we have generated monoclonal antibodies for studies on the expression and localization of these transport proteins. We describe two antibodies, designated monoclonal antibody MDQ (mMDQ) and monoclonal antibody ESL (mESL), directed against the amino terminus and the carboxyl terminus of human SLC21A6, respectively. Both antibodies have been characterized by immunoblot analysis, immunoprecipitation, and immunofluorescence microscopy. While mESL reacted specifically with SLC21A6, mMDQ detects both SLC21A6 and SLC21A8. Neither of the two antibodies reacted with other human, or with dog, rat, or mouse liver SLC21A family members. Antibody mMDQ may be used for the simultaneous detection of SLC21A6 and SLC21A8 in immunoblotting because of its immunoreactivity with both molecules and because of the different molecular masses of both glycosylated proteins in human hepatocytes. This is exemplified in hepatocellular carcinomas where SLC21A6 and SLC21A8 were differentially synthesized and showed an irregular staining pattern. Both transport proteins have not been detected in human hepatoma HepG2 cells. In routine paraffin sections, 10 of 12 hepatocellular carcinomas were focally positive with antibody mMDQ. In contrast, cholangiocarcinomas and liver metastases of colorectal and pancreatic adenocarcinoma were negative without exception. This suggests the usefulness of SLC21A6/SLC21A8 within a panel of tumor markers for hepatocellular carcinomas. Moreover, both antibodies should be useful in studies on the expression and localization of two important uptake transporters of human hepatocytes under physiologic and pathophysiologic conditions
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; CELL ; CELL-PROLIFERATION ; Germany ; GENERATION ; DISTINCT ; PROTEIN ; PROTEINS ; COMPONENTS ; MONOCLONAL-ANTIBODY ; BIOLOGY ; antibodies ; antibody ; PARTICLES ; IDENTIFICATION ; SPECTROMETRY ; REGION ; REGIONS ; XENOPUS ; MONOCLONAL-ANTIBODIES ; DNA-REPLICATION ; REPLICATION ; CLUSTER ; XENOPUS-LAEVIS ; WERNER-SYNDROME PROTEIN ; AMPLIFIED NUCLEOLI ; DESMOSOMAL PLAQUE ; NUCLEAR LAMINA PROTEINS ; NUCLEOPLASMIN FAMILY ; RIBOSOME BIOGENESIS
    Abstract: It has recently become clear that the nucleolus, the most prominent nuclear subcompartment, harbors diverse functions beyond its classic role in ribosome biogenesis. To gain insight into nucleolar functions, we have purified amplified nucleoli from Xenopus laevis oocytes using a novel approach involving fluorescence-activated cell sorting techniques. The resulting protein fraction was analyzed by mass spectrometry and used for the generation of monoclonal antibodies directed against nucleolar components. Here, we report the identification and molecular characterization of a novel, ubiquitous protein, which in most cell types appears to be a constitutive nucleolar component. Immunolocalization studies have revealed that this protein, termed NO66, is highly conserved during evolution and shows in most cells analyzed a dual localization pattern, i.e., a strong enrichment in the granular part of nucleoli and in distinct nucleoplasmic entities. Colocalizations with proteins Ki-67, HP1alpha, and PCNA, respectively, have further shown that the staining pattern of NO66 overlaps with certain clusters of late replicating chromatin. Biochemical experiments have revealed that protein NO66 cofractionates with large preribosomal particles but is absent from cytoplasmic ribosomes. We propose that in addition to its role in ribosome biogenesis protein NO66 has functions in the replication or remodeling of certain heterochromatic regions
    Type of Publication: Journal article published
    PubMed ID: 14742713
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...