Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • INDUCTION  (12)
Collection
Keywords
  • 1
    Keywords: APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; GROWTH ; carcinoma ; CELL ; Germany ; INHIBITION ; THERAPY ; HEPATOCELLULAR-CARCINOMA ; PROTEIN ; TISSUE ; LINES ; MICE ; PATIENT ; IMPACT ; INDUCTION ; CELL-LINES ; treatment ; hepatocellular carcinoma ; resistance ; AGE ; metastases ; NUDE-MICE ; CELL-LINE ; chemotherapy ; leukemia ; LINE ; MODULATION ; p53 ; CANCER-PATIENTS ; CARCINOMAS ; CISPLATIN ; CANCER PATIENTS ; cell lines ; CANCER-THERAPY ; protein expression ; P53 STATUS ; GEMCITABINE ; RE ; cancer therapy ; GENDER ; dexamethasone ; GLUCOCORTICOID-INDUCED APOPTOSIS ; NAUSEA ; HISTOLOGY ; corticosteroids ; GLUCOCORTICOIDS ; correlation ; GAMMA-IRRADIATION ; viability ; 5-FU ; xenograft
    Abstract: The glucocorticoid dexamethasone is frequently used as co-treatment in cytotoxic cancer therapy, e.g. to prevent nausea, to protect normal tissue or for other reasons. While the potent pro-apoptotic properties and the supportive effects of glucocorticoids to tumour therapy in lymphoid cells are well studied, the impact to cytotoxic treatment of colorectal and hepatocellular carcinoma is unknown. We tested apoptosis-induction, viability, tumour growth and protein expression using 8 established cell lines, 18 surgical specimen and a xenograft on nude mice. In the presence of dexamethasone we found strong inhibition of apoptosis in response to 5-FU, cisplatin, gemcitabine or gamma-irradiation, enhanced viability and tumour growth of colorectal and hepatocellular carcinomas. No correlation with age, gender, histology, TNM, the p53 status and induction of therapy resistance by dexamethasone cotreatment could be detected. These data show that glucocorticoid-induced resistance occurs not occasionally but is common in colorectal and hepatocellular carcinomas implicating that the use of glucocorticoids may be harmful for cancer patients. (c) 2005 Elsevier Ireland Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 16338063
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; carcinoma ; Germany ; IN-VIVO ; INHIBITION ; THERAPY ; VITRO ; GENE ; GENES ; LINES ; MICE ; PATIENT ; IMPACT ; INDUCTION ; treatment ; 5-FLUOROURACIL ; prevention ; resistance ; AGE ; NUDE-MICE ; CELL-LINE ; chemotherapy ; LINE ; CARCINOMAS ; specificity ; CISPLATIN ; pancreatic cancer ; CANCER-THERAPY ; CYTOTOXICITY ; signaling ; GEMCITABINE ; RE ; PANCREATIC-CANCER ; cancer therapy ; pancreatic ; GENDER ; dexamethasone ; GLUCOCORTICOID-INDUCED APOPTOSIS ; NAUSEA ; HISTOLOGY ; in vivo ; surgical resection
    Abstract: Background: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. Methods: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Antiapoptotic signaling in response to DEX was examined by Western blot analysis. Results: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. Conclusion: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients
    Type of Publication: Journal article published
    PubMed ID: 16539710
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RECEPTOR ; APOPTOSIS ; CANCER ; CELLS ; IN-VITRO ; tumor ; AGENTS ; carcinoma ; CELL ; Germany ; IN-VIVO ; INHIBITION ; THERAPY ; VITRO ; VIVO ; SAMPLES ; TUMORS ; TIME ; PATIENT ; INDUCTION ; cell cycle ; CELL-CYCLE ; CYCLE ; treatment ; PROGRESSION ; resistance ; INDUCED APOPTOSIS ; PLASMA ; prostate cancer ; PROSTATE-CANCER ; chemotherapy ; ACUTE LYMPHOBLASTIC-LEUKEMIA ; DERIVATIVES ; HEPATOMA-CELLS ; EPITHELIAL-CELLS ; CARCINOMAS ; PHARMACOKINETICS ; AGENT ; SINGLE ; ONCOLOGY ; RE ; EX-VIVO ; SOLID TUMORS ; MEDIATED APOPTOSIS ; MOLECULAR-MECHANISMS ; LEVEL ; analysis ; methods ; PLASMA-LEVELS ; dexamethasone ; PROMOTION ; USA ; GLUCOCORTICOIDS ; prospective ; in vivo ; clinical study
    Abstract: Background: Glucocorticoids have been used widely in conjunction with cancer therapy due to their ability to induce apoptosis in hematological cells and to prevent nausea and emesis. However, recent data including ours, suggest induction of therapy resistance by glucocorticoids in solid tumors, although it is unclear whether this happens only in few carcinomas or is a more common cell type specific phenomenon. Material and Methods: We performed an overall statistical analysis of our new and recent data obtained with 157 tumor probes evaluated in vitro, ex vivo and in vivo. The effect of glucocorticoids on apoptosis, viability and cell cycle progression under diverse clinically important questions was examined. Results: New in vivo results demonstrate glucocorticoid - induced chemotherapy resistance in xenografted prostate cancer. In an overall statistical analysis we found glucocorticoid - induced resistance in 89% of 157 analysed tumor samples. Resistance is common for several cytotoxic treatments and for several glucocorticoid - derivatives and due to an inhibition of apoptosis, promotion of viability and cell cycle progression. Resistance occurred at clinically achievable peak plasma levels of patients under anti - emetic glucocorticoid therapy and below, lasted for a long time, after one single dose, but was reversible upon removal of glucocorticoids. Two nonsteroidal alternative anti - emetic agents did not counteract anticancer treatment and may be sufficient to replace gluco corticoids in cotreatment of carcinoma patients. Conclusion: These data demonstrate the need for prospective clinical studies as well as for detailed mechanistic studies of GC - induced cell - type specific pro - and anti - apoptotic signalling
    Type of Publication: Journal article published
    PubMed ID: 17224649
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: brain ; APOPTOSIS ; CANCER ; CELLS ; IN-VITRO ; SURVIVAL ; AGENTS ; CELL ; Germany ; IN-VIVO ; VITRO ; DEATH ; DRUG ; SURGERY ; LINES ; TIME ; PATIENT ; LIGAND ; primary ; INDUCTION ; tumour ; treatment ; culture ; ACID ; CELL-DEATH ; PLASMA ; RATES ; RESECTION ; PHARMACOKINETICS ; CISPLATIN ; FUTURE ; TRAIL ; AGENT ; POTENT ; REGRESSION ; IV ; GRADE ; brain tumour ; betulinic acid ; CERAMIDE ; glioblastoma multiforme WHOIV
    Abstract: Background. Glioblastoma multiforme (WHO Grade IV, GBM) is the most malignant brain tumour with a mean survival time of less than one year. Betulinic acid, ceramide and TRAIL (TNF-related apoptosis inducing ligand) represent novel therapeutic agents for potential use in GBM. Method. Primary GBM cells of 21 patients with macroscopically complete tumour resection were tested in vitro for cell death induction by betulinic acid, ceramide, TRAIL and established therapeutics (BCNU, cisplatin, doxorubicin, vincristin and gamma-irradiation). Findings. At peak plasma concentrations (PPC), Betulinic acid, ceramide and TRAIL induced cell death in primary GBM cells at higher rates than established cytotoxic drugs. Specific cell death greater than or equal to75% was observed in 43% (9/21), 38% (8/21), and 19% (4/21) for betulinic acid, ceramide, and TRAIL respectively, while this was only found in 5% (1/21) of gamma-irradiated and cisplatin-treated cells, and in none of the GBM cultures, where BCNU or vincristin were applied in PPC. Conclusion. Due to a markedly improved cell death of GBM cells as compared with established therapeutics, Betulinic acid, ceramide and TRAIL might represent potent substances for future treatment of GBM
    Type of Publication: Journal article published
    PubMed ID: 15197616
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; INHIBITOR ; CELL ; Germany ; human ; INHIBITION ; KINASE ; PATHWAY ; THERAPY ; EXPOSURE ; NEW-YORK ; RELEASE ; TIME ; STRESS-INDUCED APOPTOSIS ; ACTIVATION ; DNA ; INDUCTION ; T cell ; T-CELL ; CLEAVAGE ; PROGRESSION ; resistance ; MEMBRANE ; STRESS ; ALKYLATING-AGENTS ; fragmentation ; LINE ; CANCER-CELLS ; SURFACE ; PROTEIN-KINASES ; CYTOCHROME-C ; doxorubicin ; CISPLATIN ; CELL-SURFACE ; FAS LIGAND EXPRESSION ; stable transfection ; apoptosis,JNK,cancer therapy,caspases ; FACTOR C-JUN ; INITIATION ; JNK/SAPK ACTIVITY ; JUN NH2-TERMINAL KINASE ; MAP KINASES ; N-TERMINAL KINASE ; THERAPY-INDUCED APOPTOSIS ; TNF-ALPHA
    Abstract: The human leukemic T-cell line Jurkat was used to define the role of the cellular stress pathway with its key player kinase JNK in cancer therapy-induced apoptosis. JNK activity was inhibited by stable transfection with a dominant negative mutant of the upstream kinase JNKK/MKK4 or with the novel, potent and selective JNKI, -2 and -3 inhibitor SP600125. Inhibition of JNK activity delayed the onset of apoptosis induced by cisplatin, doxorubicin, gamma-irradiation and CD95-L but did not prevent apoptosis per se. Early events during apoptosis such as induction of CD95-L, activation of caspase-8 and exposure of phosphatidylserine on the cell surface were strongly inhibited. Also, at early time points of apoptosis, loss of the mitochondrial membrane potential and release of cytochrome c were markedly impaired. However, late signaling events during apoptosis such as cleavage of PARP and DNA fragmentation apoptosis were only marginally affected. These findings are in accordance with the activity of initiator and effector caspases. Whereas activity of the initiator caspase-8 was strongly inhibited early and late after induction, an inhibition of caspase-3 activity was only observed early after induction of apoptosis. We therefore suggest that cellular stress signaling contributes to the initiation of apoptosis, whereas it might be dispensable for the progression of apoptosis. Dysfunction of this pathway under pathological conditions might contribute to therapy resistance of cancer cells. (C) 2003 Wiley-Liss, Inc
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: APOPTOSIS ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; CELL ; Germany ; human ; IN-VIVO ; THERAPY ; VITRO ; VIVO ; SYSTEM ; DEATH ; GENE ; PROTEIN ; DRUG ; LINES ; MICE ; gene transfer ; GENE-TRANSFER ; LIGAND ; INDUCTION ; tumour ; T cell ; T cells ; T-CELL ; T-CELLS ; ANTITUMOR-ACTIVITY ; TARGET ; LYMPHOMA ; resistance ; CELL-DEATH ; chemotherapy ; LINE ; CANCER-CELLS ; PRODUCT ; SURFACE ; sensitization ; SELECTION ; CELL-SURFACE ; TRAIL ; HUMAN HEPATOCYTES ; APOPTOSIS-INDUCING LIGAND ; DRINKING ; DRUG-INDUCED APOPTOSIS ; INDUCE APOPTOSIS ; TRAIL,gene therapy,Tet system,apoptosis,B cell lymphoma
    Abstract: In the present study, we demonstrate the utility of a non-tumour-forming T-cell line for the inducible gene transfer of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL), which has been shown to selectively induce apoptosis in malignant but not in normal cells. To generate T cells inducible for TRAIL expression, we stably transfected Jurkat cells with TRAIL in the context of the Tet-On system. The switched on cells strongly expressed TRAIL mRNA, whose protein product was expressed on the cell surface. Paracrine induction of apoptosis in human target tumour cells was solely found for membrane-bound TRAIL. The Jurkat-TRAIL cells itself survived due to clonal selection of TRAIL-resistant cells. Jurkat-TRAIL cells had an additive effect with cytotoxic drugs in vitro, since cell death was enhanced. To elucidate the antitumoral activity of these Jurkat-TRAIL cells in vivo, we injected them intratumorally in xenografts of human Burkitt lymphomas. Switching on expression of TRAIL by adding tetracycline to the drinking water of the mice strongly reduced tumour growth by apoptosis in a caspase-dependent manner. Thus, non-tumour-forming T-cell lines offer a novel method for gene transfer and inducible expression of TRAIL in tumour therapy
    Type of Publication: Journal article published
    PubMed ID: 14647152
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; SURVIVAL ; carcinoma ; CELL ; Germany ; IN-VIVO ; INHIBITION ; THERAPY ; VITRO ; VIVO ; DENSITY ; GENE ; GENES ; PROTEIN ; TISSUE ; LINES ; MICE ; PATIENT ; IMPACT ; INDUCTION ; CELL-LINES ; treatment ; BREAST-CANCER ; prevention ; resistance ; PLASMA ; ovarian cancer ; OVARIAN-CANCER ; NUDE-MICE ; CELL-LINE ; chemotherapy ; LINE ; CANCER-CELLS ; CANCER-PATIENTS ; CARCINOMAS ; ovarian carcinoma ; CANCER PATIENTS ; cell lines ; CANCER-THERAPY ; protein expression ; ONCOLOGY ; RE ; TUMOR-GROWTH ; cancer therapy ; EX-VIVO ; LEVEL ; PLASMA-LEVELS ; dexamethasone ; NAUSEA ; OVARIAN CARCINOMAS ; corticosteroids ; GLUCOCORTICOIDS ; in vivo ; OVARIAN ; viability ; xenograft
    Abstract: The glucocorticoid dexamethasone is frequently used as a co-treatment in cytotoxic cancer therapy, e.g. to prevent nausea, to protect normal tissue or for other reasons. While the potent pro-apoptotic properties and supportive effects of glucocorticoids to tumour therapy in lymphoid cells are well studied, the impact on the cytotoxic treatment of ovarian carcinoma is unknown. We tested apoptosis-induction, viability, tumour growth and protein expression using established cell lines, primary cell lines freshly isolated from patient material and a xenograft on nude mice. We found a general induction of resistance toward cytotoxic therapy by DEX-co-treatment in most of the examined ovarian cancer cells treated in vitro, ex vivo or in vivo. Resistance occured independently of cell density and was found at peak plasma levels of dexamethasone and below. Mechanistically, the dexamethasone-induced expression of survival genes may be involved in the resistance. These data show that glucocorticoid-induced resistance is common in ovarian carcinomas implicating that the use of glucocorticoids may be harmful for cancer patients
    Type of Publication: Journal article published
    PubMed ID: 16391812
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; tumor ; TUMOR-CELLS ; CELL ; Germany ; human ; IN-VIVO ; LUNG ; VITRO ; VIVO ; lung cancer ; LUNG-CANCER ; DEATH ; PROTEIN ; EFFICIENCY ; TISSUE ; TUMORS ; MICE ; TRANSDUCTION ; ACTIVATION ; LIGAND ; INDUCTION ; T-CELLS ; SUPPRESSION ; PARTICLES ; virus ; VECTOR ; CELL-DEATH ; COLORECTAL-CANCER ; NUDE-MICE ; EFFICIENT ; CANCER-CELLS ; NORMAL TISSUE ; RETROVIRAL VECTORS ; CONSTRUCTION ; VIRAL VECTORS ; TUMOR CELLS ; TRAIL ; TRANSDUCTION EFFICIENCY ; APOPTOSIS-INDUCING LIGAND ; INTEGRATION ; RECOMBINANT ; RE ; TUMOR-GROWTH ; EX-VIVO ; LENTIVIRAL VECTOR ; analysis ; TUMOR-CELL ; TRANSFORMED-CELLS ; EVALUATE ; in vivo ; EXTENT ; NECROSIS ; APO2L/TRAIL ; anticancer agent ; translational research ; CANCER GENE-THERAPY ; gene therapy for solid tumors
    Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, which selectively induces apoptosis in many transformed cells without apparent toxic side effects in normal tissue. We recently described the construction and characterization of a lentiviral vector for expression of TRAIL. In this report, we evaluate its suitability for therapeutic application. In vitro, we observed specific induction of apoptosis upon transduction in human lung cancer cells. Cell death was partially dependent on successful integration and TRAIL expression by the vectors, but was to some extent mediated by protein carryover, as we found TRAIL protein associated with virus particles. Transduction of subcutaneously growing lung tumors on nude mice with lentiviral TRAIL mediated a transient suppression of tumor growth. Analysis of tumor sections revealed that transduction efficiency of lentiviral control vector but not of lentiviral TRAIL vector was high. This was because of the direct cytotoxic activity of recombinant TRAIL present in viral particles, which prevented efficient tumor transduction. These data therefore suggest that enveloped viral vectors constitutively expressing TRAIL are well suited for ex vivo applications, such as the transduction of tumor-homing cells, but may have a lower effect when used directly for the transduction of tumor cells in vivo
    Type of Publication: Journal article published
    PubMed ID: 17186015
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; INHIBITOR ; tumor ; CELL ; Germany ; human ; IN-VIVO ; THERAPY ; VITRO ; VIVO ; DEATH ; GENE ; PROTEIN ; cell line ; TUMORS ; gene therapy ; LINES ; MICE ; RELEASE ; TRANSDUCTION ; ACTIVATION ; LIGAND ; RESPONSES ; MECHANISM ; INDUCTION ; CELL-LINES ; ANTITUMOR-ACTIVITY ; IMMUNE-RESPONSES ; virus ; VECTORS ; CELL-DEATH ; CELL-LINE ; LINE ; CANCER-CELLS ; DELIVERY ; SUPERFAMILY ; immune response ; IMMUNE-RESPONSE ; GENE-THERAPY ; RECOMBINANT ADENOASSOCIATED VIRUS ; adeno-associated virus ; ADENOASSOCIATED VIRUS ; AAV ; DEATH RECEPTORS ; GENE DELIVERY ; HUMAN HEPATOCYTES ; APOPTOSIS-INDUCING LIGAND ; AAV,TRAIL,colon cancer,apoptosis
    Abstract: Gene transfer vectors based on the adeno-associated virus (AAV) are used for various experimental and clinical therapeutic approaches. In the present study, we demonstrate the utility of rAAV as a tumoricidal agent in human colorectal cancer. We constructed an rAAV vector that expresses tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) and used it to transduce human colorectal cancer cells. TRAIL belongs to the TNF superfamily of cytokines that are involved in various immune responses and apoptotic processes. It has been shown to induce cell death specifically in cancer cells. Transduction with AAV. TRAIL gave rise to rapid expression of TRAIL, followed by induction of apoptosis, which could be inhibited by the caspase inhibitor z-VAD. fmk, in several human colon cancer cell lines. The apoptotic mechanism included activation of caspase-3, as well as cytochrome c release from mitochondria. The outgrowth of human colorectal tumors grown in mice was completely blocked by transduction with AAV. TRAIL in vitro, while in vivo transduction significantly inhibited the growth of established tumors. AAV vectors could provide a safe method of gene delivery and offer a novel method of using TRAIL as a therapeutic protein
    Type of Publication: Journal article published
    PubMed ID: 14999225
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: RECEPTOR ; APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; tumor ; CELL ; Germany ; human ; IN-VIVO ; THERAPY ; DEATH ; GENE ; gene therapy ; LINES ; NF-KAPPA-B ; LIGAND ; DNA ; MECHANISM ; INDUCTION ; CELL-LINES ; ANTITUMOR-ACTIVITY ; resistance ; VECTOR ; CELL-LINE ; LINE ; DAMAGE ; DNA-DAMAGE ; CISPLATIN ; CELL-SURFACE ; RECEPTORS ; OVEREXPRESSION ; cell lines ; CANCER-THERAPY ; TRAIL ; ENDOPLASMIC-RETICULUM ; HUMAN HEPATOCYTES ; APOPTOSIS-INDUCING LIGAND ; CD95 ; MALIGNANT-CELLS ; HUMAN T-CELLS ; RE ; HUMAN CANCER ; cancer therapy ; LENTIVIRAL VECTOR ; GENE INDUCTION ; TUMOR-CELL ; DNA damage ; TRANSFORMED-CELLS ; CANDIDATE ; RESISTANT ; VARIETIES ; NECROSIS ; CANCER-CELLS RESISTANT ; resistance mechanism
    Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in many transformed cells, suggesting TRAIL as an ideal candidate for cancer gene therapy. A main obstacle in cancer therapy is intrinsic or acquired therapy resistance of malignant cells. To study induction of resistance against TRAIL, we generated lentiviral vectors allowing efficient TRAIL expression and apoptosis induction in a variety of human cancer cell lines. Within days upon TRAIL overexpression, cells became resistant towards TRAIL, but not to CD95 ligation or DNA damage by cisplatin. Cell surface expression of TRAIL receptors 1 and 2 was completely abrogated in resistant cells due to intracellular retention of the receptors by TRAIL. SiRNA directed against TRAIL resensitized the resistant cells by restoring cell surface expression of TRAIL receptors. These findings represent a novel resistance mechanism towards TRAIL, specifically caused by TRAIL overexpression, and question the use of TRAIL expression in tumor-cell targeting gene therapy
    Type of Publication: Journal article published
    PubMed ID: 16470224
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...