Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Immunocytochemistry  (5)
  • Springer  (5)
  • Blackwell Science Pty
  • Macmillian Magazines Ltd.
Collection
Publisher
  • Springer  (5)
  • Blackwell Science Pty
  • Macmillian Magazines Ltd.
  • Elsevier  (1)
Years
  • 1
    ISSN: 1432-0568
    Keywords: Immunocytochemistry ; Electron microscopy ; CR3 receptors ; Amoeboid microglia ; Rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The present study described the labelling of amoeboid microglial cells in the postnatal rat brain with OX-42, an antibody that recognizes type 3 complement receptors CR3 in mononuclear phagocytes. Of the diverse morphological forms of amoeboid microglia present in the corpus callosum in early postnatal (2–5 days) rats, cells with a round regular outline, or showing short stout processes, were the most intensely stained. When traced from the main cell colony into the borderline zone with the cortex, the immunoreactivity of amoeboid microglia that assumed a ramified form was drastically reduced. Examination of materials from the late postnatal (8–12 days) age group showed that the majority of the OX-42 positive cells in the corpus callosum became oval, elongated and ramified. Immunoelectron microscopy confirmed the above observations, and also showed that the immunoreactivity in the round amoeboid microglia was localized in their plasma membrane, surface projections and invaginations, as well as in some of the subsurface vacuoles. The immunoreactivity was reduced in the oval cells, and diminished in the elongated or ramified form. It is proposed that the presence of CR3 membrane receptors in amoeboid microglial cells is related to their active role in endocytosis. These, however, diminish with the growth of the brain.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Monkey ; Trigeminal ganglion ; Substance P ; Immunocytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The immunoreactivity of substance P(SP) in the monkey trigeminal ganglion was examined and the distribution of immunoreactive cells determined. The monkey trigeminal ganglion is composed of clusters of sensory cells arranged in cords parallel to the long axis of the nerve fibres. The cells have prominent nuclei and are surrounded by satellite cells. Abundant organelles are randomly distributed throughout the cytoplasm. A striking feature of the ganglion was the presence of some axon-like prolifes containing mainly dense-cored vesicles and some agranular vesicles. Between 16 and 32% of the ganglion cells displayed SP-immunoreactivity. Most of the SP-IR cells were unipolar, small to medium-sized ganglion cells and they had no specific pattern of distribution. The staining of the SP-IR cells varied considerably, ranging from weak or moderate to heavy staining, although the majority of them were moderately stained. Immuno-electron microscopy showed that the SP-IR products were distributed throughout the soma of ganglion cells and not associated with any particular organelles or inclusions. The reaction products were also found in both myelinated and unmyelinated fibres between the ganglion cells. Another remarkable feature of the trigeminal ganglion was the occurrence of some SP-IR nerve fibres forming a rich “glomerular” network of pericellular arborizations around some of the SP-negative cells. Ultrastructural study showed the presence of some SP-IR nerve terminals in close approximation to some SP-negative cells, but there were no synaptic contacts. The relative frequency of the SP-IR pericellular arborizations paralleled the frequency of all the SP-IR cells. The results may imply that the pericellular arborizations function as a medium of communication between SP-positive and SP-negative sensory cells within the ganglion. It was suggested that the fibres forming the pericellular arborizations may originate from the intrinsic ganglion cells that are SP-positive.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Prostate gland ; Keratin ; Vitamin A ; Epithelium ; Immunocytochemistry ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Expression of certain cytokeratins can be indicative of the state of differentiation of epithelial cells. The basal cells in the normal adult human prostatic epithelium are characterized by the expression of cytokeratins 5 and 14, whereas the secretory luminal cells contain cytokeratins 8 and 18. Cells cultured from the prostatic epithelium expressed cytokeratins 5, 8, and 18, and thus had features of both basal and luminal cells. Certain growth-inhibitory conditions altered keratin expression in conjunction with growth modulation. Deletion of peptide factors and hormones from the culture medium induced the expression of cytokeratins 1 and 10, associated with a squamous phenotype. These same squamous keratins were found in very dense, stratified cultures that were maintained at confluency in standard, complete medium for extended periods. Retinoic acid enhanced the expression of secretory luminal cell-associated cytokeratins 8 and 18 in semi-confluent cultures. Other growth inhibitory factors such as suramin, transforming growth factor-β, and interferon-γ had no effect on keratin expression. These observations indicate that the differentiation of prostatic epithelial cells can be directed toward alternate pathways, either squamous or secretory, by different growth-inhibitory conditions. However, not all growth inhibitory factors altered differentiation, demonstrating that growth inhibition in itself is not a sufficient inducer of differentiation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Urotensin ; Caudal neurosecretory system ; Immunocytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The localization of urotensin I has been investigated in the caudal neurosecretory system of the white sucker (Catostomus commersoni). The peptide is present in all the cells of the system both large and small, in the large axons passing to the urophysis, and in fine beaded fibres not only within the urophysis but also in a fine plexus lateral to the large cells in the spinal cord proper. The possibility that the caudal neurosecretory system is not a functionally uniform system but rather a collection of dissimilar cells of different synaptic inputs with a common entity, urotensin I, is discussed. Moreover, the feasibility of a urotensin I feedback loop is described.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0878
    Keywords: Substance P ; Immunocytochemistry ; Ciliary ganglion ; Monkey, Macaca fascicularis (Primates) ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The present study describes substance P-like immunoreactivity in the ciliary ganglia of monkey (Macaca fascicularis) and cat. About 60% of neurons in the monkey ciliary ganglion and 40% in the cat ciliary ganglion were substance P-like immunoreactive, ranging from faint to moderate staining. Substance P-like immunoreactivity was located in cell bodies, dendritic profiles and axons. In the monkey, substance P-like immunoreactive pericellular arborisations were associated with about 0.5%–3% of the ganglion cells, which were either negatively, faintly or moderately stained. An electron-microscopic study demonstrated the presence of either substance P-like immunoreactive positive or negative axon terminals synapsing or closely associated with positive dendritic profiles in both the monkey and cat ciliary ganglia. The results suggest that substance P plays an important role in the ciliary ganglion, perhaps as a modulator or transmitter.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...