Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
Filter
  • C-REACTIVE PROTEIN  (1)
  • Isozymes  (1)
  • MUTATIONS  (1)
Publisher
Years
  • 1
    Keywords: liver ; RISK ; METABOLISM ; SIGNALING PATHWAYS ; MUTATIONS ; C-REACTIVE PROTEIN ; GLUCOSE ; NUCLEAR FACTOR 1-ALPHA ; LOGIC REGRESSION ; MICE LEADS
    Abstract: Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case-control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P 〈 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 x 10(-6), 1.6 x 10(-5), 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 x 10(-5)), whereas the others did not. The most significant genes (P 〈 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H.pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer.
    Type of Publication: Journal article published
    PubMed ID: 22523087
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Hordeum ; Grain ; Isozymes ; Ribosomal DNA ; Genetic adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Grain isozyme and ribosomal DNA (rDNA) variability was examined in Hordeum spontaneum populations sampled from 27 geographical sites in Israel. Considerable phenotypic variability was observed with variants of ADH1, EST3, EST10, BMY1 and WSP detected, which are not available in the H. vulgare gene pool. Seven new rDNA phenotypes were detected in the H. spontaneum populations. Shannon's index of diversity was used to partition the total phenotypic variation into between and within population components. Most of the variation occurred between H. spontaneum populations. The distribution of both grain isozyme and rDNA phenotypes was non-random and correlated with a range of ecogeographical factors. In particular, the G phenotype of BMY1 was restricted to the Negev Desert and Dead Sea regions of Israel. Over 78% of the variation in the frequency of this particular phenotype could be explained by the number of rainy days per year and mean temperature in January. This suggests that variation at this locus or at loci linked to it may be of adaptive significance and of value in the introgression of genes controlling abiotic stress tolerance from H. spontaneum into the H. vulgare gene pool.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...