Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BREAST-CANCER  (9)
  • METAANALYSIS  (8)
  • TUMORS  (7)
  • 1
    Keywords: CANCER ; EXPRESSION ; COMBINATION ; DISEASE ; RISK ; GENE ; GENE-EXPRESSION ; IMPACT ; BIOLOGY ; MOLECULAR-BIOLOGY ; ASSOCIATION ; polymorphism ; single nucleotide polymorphism ; VARIANTS ; gene expression ; NUMBER ; MUTATION ; genetics ; SNP ; colorectal cancer ; COLORECTAL-CANCER ; REGION ; MUTATIONS ; INDIVIDUALS ; SERIES ; HEALTHY ; heredity ; molecular biology ; molecular ; RE ; VARIANT ; INCREASE ; METAANALYSIS ; ALLELES ; LOCUS ; single-nucleotide polymorphism ; ENGLAND ; 8Q24 ; INCREASES ; GENOME-WIDE ASSOCIATION ; association study ; SCAN ; GENOME-WIDE
    Abstract: The common single-nucleotide polymorphism (SNP) rs3802842 at 11q23.1 has recently been reported to be associated with risk of colorectal cancer (CRC). To examine this association in detail we genotyped rs3802842 in eight independent case-control series comprising a total of 10 638 cases and 10 457 healthy individuals. A significant association between the C allele of rs3802842 and CRC risk was found (per allele OR = 1.17; 95% confidence interval [CI]: 1.12-1.22; P = 1.08 x 10(-12)) with the risk allele more frequent in rectal than colonic disease (P = 0.02). In combination with 8q21, 8q24, 10p14, 11q, 15q13.3 and 18q21 variants, the risk of CRC increases with an increasing numbers of variant alleles for the six loci (ORper allele = 1.19; 95% CI: 1.15-1.23; P-trend = 7.4 x 10(-24)). Using the data from our genome-wide association study of CRC, LD mapping and imputation, we were able to refine the location of the causal locus to a 60 kb region and screened for coding changes. The absence of exonic mutations in any of the transcripts (FLJ45803, LOC120376, C11orf53 and POU2AF1) mapping to this region makes the association likely to be a consequence of non-coding effects on gene expression
    Type of Publication: Journal article published
    PubMed ID: 18753146
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: EXPRESSION ; GENE ; BREAST-CANCER ; OVARIAN-CANCER ; PROSTATE-CANCER ; telomere length ; COMMON VARIANT ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; FUNCTIONAL VARIATION
    Abstract: Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT-CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 x 10(-6) to P = 7.7 x 10(-5)). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERT P = 1.5 x 10(-18), CLPTM1L P = 1.5 x 10(-19)). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.
    Type of Publication: Journal article published
    PubMed ID: 25487306
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: COHORT ; VARIANTS ; WOMEN ; HEIGHT ; METAANALYSIS ; bias ; ESTROGEN ; GENOME-WIDE ASSOCIATION ; PROGESTERONE-RECEPTOR STATUS ; INOSITOL POLYPHOSPHATES
    Abstract: A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk factors for BC. Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 30,119 controls. Interactions between SNPs and environmental factors were evaluated using an empirical Bayes-type shrinkage estimator. Six SNPs showed interactions with associated p-values (p(int)) 〈1.1 x 10(-3). None of the observed interactions was significant after accounting for multiple testing. The Bayesian False Discovery Probability was used to rank the findings, which indicated three interactions as being noteworthy at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative BC risk in women 170 cm (OR = 1.22, p = 0.017), but inversely associated with ER-negative BC risk in women 〈160 cm (OR = 0.83, p = 0.039, p(int) = 1.9 x 10(-4)). The inverse association between rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies (OR = 0.85, p = 2.0 x 10(-4)), and absent in women who had had just one (OR = 0.96, p = 0.19, p(int) = 6.1 x 10(-4)). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR = 0.93, p = 2.8 x 10(-5)), but no association was observed in current smokers (OR = 1.07, p = 0.14, p(int) = 3.4 x 10(-4)). In conclusion, recently identified BC susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies. What's new? The recent discovery of 47 susceptibility loci associated with all or estrogen receptor-negative breast cancer provided new opportunities for genetic risk prediction but it remained unclear how exposure levels of environmental (non-genetic) risk factors influenced the risk assessment. In this gene-environment study, the international team examined interactions between the single nucleotide polymorphisms and 13 established environmental risk factors including parity, height and alcohol consumption. Notably, relative risks of breast cancer associated with the susceptibility loci were not strongly modified by environmental risk factors, a finding that, if confirmed, has important implications for the risk assessment in breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 25227710
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: TUMORS ; STABILITY ; ARCHITECTURE ; mammographic density ; GENOME-WIDE ASSOCIATION ; AUTOPHAGY ; COMMON VARIANTS ; BRCA2 MUTATION CARRIERS ; GENOTYPE IMPUTATION ; ZNF365
    Abstract: Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 10.82-0.881) and ER-negative (OR = 0.87 [0.82-0.911) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:0) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 10.91-0.951 and OR = 1.06 [1.03-1.091) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.131) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.961). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 26073781
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; EXPRESSION ; DISEASE ; RISK ; GENE ; GENES ; ASSOCIATION ; SUSCEPTIBILITY ; BREAST ; breast cancer ; BREAST-CANCER ; genetics ; familial risk ; USA ; LOCI ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; Genetic ; 33 ; COMMON VARIANTS ; Genome-wide association studies
    Abstract: Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage, and 3,990 cases and 3,916 controls in the second stage(1). To identify additional loci, we tested over 800 promising associations from this GWAS in a further two stages involving 37,012 cases and 40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association Consortium. We found strong evidence for additional susceptibility loci on 3p (rs4973768: per-allele OR 1.11, 95% CI = 1.08-1.13, P = 4.1 x 10(-23)) and 17q (rs6504950: per-allele OR 0.95, 95% CI = 0.92-0.97, P = 1.4 x 10(-8)). Potential causative genes include SLC4A7 and NEK10 on 3p and COX11 on 17q
    Type of Publication: Journal article published
    PubMed ID: 19330027
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: RECEPTOR ; CANCER ; CELLS ; EXPRESSION ; tumor ; CELL ; RISK ; PROTEIN ; transcription ; DIFFERENTIATION ; TUMORS ; TRANSCRIPTION FACTOR ; MARKER ; REDUCTION ; BIOMARKERS ; ASSOCIATION ; LINKAGE ; polymorphism ; single nucleotide polymorphism ; SUSCEPTIBILITY ; BREAST ; breast cancer ; BREAST-CANCER ; BRCA1 ; WOMEN ; MUTATION ; SNP ; MARKERS ; cancer risk ; LINKAGE DISEQUILIBRIUM ; PROGENITOR CELLS ; CARRIERS ; case-control studies ; PROJECT ; MORPHOGENESIS ; ER ; ESTROGEN-RECEPTOR ; SINGLE ; case control study ; case-control study ; BRCA2 ; TUMOR-SUPPRESSOR ; VARIANT ; MAMMARY-GLAND ; MUTATION CARRIERS ; ESTROGEN ; biomarker ; estrogen receptor ; pooled analysis ; USA ; CANCER-RISK ; CONSORTIUM ; tumor suppressor ; 3 ; Genetic ; TRANSCRIPTION-FACTOR ; BRCA1 and BRCA2 ; GATA3 ; LUMINAL CELL FATE
    Abstract: GATA-binding protein 3 (GATA3) is a transcription factor that is crucial to mammary gland morphogenesis and differentiation of progenitor cells, and has been suggested to have a tumor suppressor function. The rs570613 single nucleotide polymorphism (SNP) in intron 4 of GATA3 was previously found to be associated with a reduction in breast cancer risk in the Cancer Genetic Markers of Susceptibility project and in pooled analysis of two case-control studies from Norway and Poland (P (trend) = 0.004), with some evidence for a stronger association with estrogen receptor (ER) negative tumours [Garcia-Closas M et al. (2007) Cancer Epidemiol Biomarkers Prev 16:2269-2275]. We genotyped GATA3 rs570613 in 6,388 cases and 4,995 controls from the Breast Cancer Association Consortium (BCAC) and 5,617 BRCA1 and BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). We found no association between this SNP and breast cancer risk in BCAC cases overall (ORper-allele = 1.00, 95% CI 0.94-1.05), in ER negative BCAC cases (ORper-allele = 1.02, 95% CI 0.91-1.13), in BRCA1 mutation carriers RRper-allele = 0.99, 95% CI 0.90-1.09) or BRCA2 mutation carriers (RRper-allele = 0.93, 95% CI 0.80-1.07). We conclude that there is no evidence that either GATA3 rs570613, or any variant in strong linkage disequilibrium with it, is associated with breast cancer risk in women
    Type of Publication: Journal article published
    PubMed ID: 19082709
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: POPULATION ; GENOME ; ASSOCIATION ; FREQUENCY ; BREAST-CANCER ; GENETIC-VARIATION ; SIGNATURES ; POSITIVE SELECTION ; JEWS ; TAY-SACHS DISEASE
    Abstract: Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage disequilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews
    Type of Publication: Journal article published
    PubMed ID: 21597964
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: POPULATION ; RISK ; TUMORS ; ASSOCIATION ; VARIANTS ; breast cancer ; SELECTION ; SUBTYPES ; breast cancer risk ; CONSORTIUM ; INVESTIGATORS ; MODIFIERS ; COMMON VARIANTS ; GENETIC-VARIANTS ; SUSCEPTIBILITY ALLELES ; ZNF365
    Abstract: BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers
    Type of Publication: Journal article published
    PubMed ID: 23544013
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: carcinoma ; fibroblasts ; METAANALYSIS ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; REVERSE-TRANSCRIPTASE HTERT ; GENETIC-VARIATION ; COMMON VARIANTS ; TERT-CLPTM1L LOCUS ; BUCCAL CELLS
    Abstract: TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOG, we analyzed similar to 480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 x 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 x 10(-8)) and BRCA1 mutation carrier (P = 1.1 x 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 x 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 x 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 x 10(-12)) and BRCA1 mutation carrier (P = 1.6 x 10-14) breast and invasive ovarian (P = 1.3 x 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.
    Type of Publication: Journal article published
    PubMed ID: 23535731
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: APOPTOSIS ; GENES ; TUMORS ; ACTIVATION ; PROMOTER ; SUBTYPES ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; CYCLIN D1 EXPRESSION ; FUNCTIONAL VARIANTS
    Abstract: Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER-: odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, p(trend) = 5.7 3 10(-44)) and estrogen-receptor-negative (ER-: OR = 1.10, 95% CI = 1.05-1.15, p(trend) = 3.0 x 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [p(cond) = 1.61 x 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER-: OR = 0.90, 95% CI = 0.87-0.93, p(cond) = 1.4 x 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
    Type of Publication: Journal article published
    PubMed ID: 25529635
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...